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ABSTRACT
Prior error management techniques often do not possess the ver-
satility to appropriately address robot errors across tasks and sce-
narios. Their fundamental framework involves explicit, manual
error management and implicit domain-specific information driven
error management, tailoring their response for specific interaction
contexts. We present a framework for approaching error-aware
systems by adding implicit social signals as another information
channel to create more flexibility in application. To support this
notion, we introduce a novel dataset (composed of three data col-
lections) with a focus on understanding natural facial action unit
(AU) responses to robot errors during physical-based human-robot
interactions—varying across task, error, people, and scenario. Anal-
ysis of the dataset reveals that, through the lens of error detection,
using AUs as input into error management affords flexibility to the
system and has the potential to improve error detection response
rate. In addition, we provide an example real-time interactive robot
error management system using the error-aware framework.
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1 INTRODUCTION
Robot errors are inescapable and perennial in complex human-robot
collaboration; these errors are mostly unexpected and come from a
multitude of sources ranging from mechanical malfunctions (e.g.,
failure to close the gripper when attempting to grasp) to uncertain
perceptions and reasoning (e.g., errors in intent recognition) to
shifts in the environment (e.g., new physical constraints emerge). If
not managed appropriately, their negative effects on task success,
safety, and human trust and willingness to work together will snow-
ball and require more time and effort to recover from [16, 24, 34].
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Figure 1: We present an error-aware robotic system frame-
work that includes social signals as input. We illustrate the
potential that social signals afford on improving the flexibil-
ity and timeliness of error detection via collecting, analyzing,
andmodeling a novel dataset—diverse in interaction contexts
and tasks—of AU responses to robot errors.

Error detection is the critical first step in successful error man-
agement, followed by error identification, mitigation, and recovery.
Automatic error detection methods proposed by prior work are
largely domain specific (e.g., [7]), requiring “hardcoding” rules to
detect deviated task behaviors. Therefore, these methods are not
adaptable to new, unexpected errors, scenarios, and tasks [19]. In
this work, we ask the question: how can we enable flexible methods
for error detection that account for a range of unexpectedness and
variability in people’s behaviors and collaboration contexts?

Social signals are a promising source of information for enabling
flexible error detection. People exhibit a variety of social signals
in response to robot errors due to their unexpectedness [13]; these
signals include rich facial expressions, bodily gestures, and verbal
responses. Most research exploring the relationship between social
signals and robot errors has been situated in social contexts using a
social robot (e.g., [21, 28, 38]). More recently, studies [36, 37] have
found that people exhibit similar social signals when encountering
errors produced by a non-anthropomorphic robot manipulator in a
non-social interaction context (e.g., task demonstration).

As motivated by these prior studies, in this work, we aim to
formalize the incorporation of social signals in error detection, and
more broadly error management (Figure 1), and create resources—
including a dataset, computational models, and a system—to foster
the development of flexible, error-aware robotic systems for com-
plex human-robot collaboration. Our work makes the following
contributions to the HRI community:
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• We introduce a new framework for error detection that aug-
ments status quomethods with social signal-based prediction
(Section 3).

• We curate and present a dataset containing three physical
human-robot interaction scenarios in which participants
experienced different types of robot errors (Section 4). 1

• We implement and release a flexible, real-time error-aware
system to support a human-robot collaborative assembly
scenario (Section 5). 2

2 BACKGROUND
Technical and unexpected errors are unavoidable in deployed robotic
systems; for example, it is difficult to decrease the mean time be-
tween failures below 72 to 216 hours in mobile robots deployed in
museums [30]. Robot errors harm robot task performance, which
negatively impacts user trust [34, 35]. The decrease in trust depends
on the quantity and severity of the errors [29]. In addition, the situ-
ation and team members can dictate the impact those errors have
on the collaboration [12, 33]. As a result, errors can create user
resistance to collaborate [15].

2.1 Error Detection in HRI
Accurate and prompt error detection is critical for effective error
mitigation and recovery, as user uncertainty of when or how er-
rors might occur impacts recovery effectiveness [11, 26]. In part,
this is because error management—consisting of error detection,
classification, mitigation, and recovery—requires an understanding
of the errors and their impact [16, 17]. So, a positive relationship
can only be formed between the user and the robot if errors can be
identified reliably, enabling appropriate recovery strategies [40].

Many error detection techniques in HRI, when specifically look-
ing at physical interactions, are specially designed for each task and
consider a set of predefined anticipated errors [19]. The resulting
methods use task-specific or domain-specific information, includ-
ing hierarchical action structure (e.g., [25]), task structure (e.g., [7]),
characteristics of anticipated errors (e.g., [9]), and past robot action
to detect robot state anomalies [31]. None of these consider other
factors, such as the teammate’s values and task context, that affect
whether robot actions are errors and so are not easily generalized
across people, tasks, and errors [10, 33]. However, error detection
adaptability is important because robot errors do not ascribe to our
expectations of what could happen during a task [19].

2.2 Use of Socials Signals in HRI
Through user’s natural response to human-robot interaction, infor-
mation about robot actions, tasks, and users’ mental models of a
robot can be imparted to the robot. Social signals are already used to
aid collaboration in HRI through conveying perceived task difficulty
(e.g., [1]), need for help (e.g., [39]), and engagement breakdown (e.g.,
[4]). Social signals are also dependable indicators of errors as people
react to robot errors socially due to their unexpectedness [13, 27, 38].
Users display more social signals during situations with errors than
ones without [8]. Common instinctive responses to robot errors
are gaze [2, 20, 21], facial expressions [37, 38], verbalizations [21],

1https://github.com/intuitivecomputing/Response-to-Errors-in-HRI-Dataset
2https://github.com/intuitivecomputing/Error-Aware-Robotic-System
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Figure 2: Our proposed error-aware framework contains
three layers of input (explicit user indicator, implicit domain-
specific indicator, and implicit social signals indicator).

and body movements [7, 13, 21]. Error severity and type were also
found to influence participants’ responses [21, 22, 36]. However,
much prior work was contextualized in social scenarios interacting
with humanoid robots, which may elicit different responses than
interactions with non-anthropomorphic robots [20].

2.2.1 Robot Error Detection Using Social Signals. Two studies uti-
lized social signals to detect robot errors automatically in HRI. One
study showed that—with a collection of head, body, gaze, AU, and
verbal tracking—it is possible to automatically detect and classify
certain social errors during conversational failures with a social ro-
bot. In addition, different social signals were indicative of errors in
different conversational scenarios [21]. The other study focused on
physical-based interactions, exploring the feasibility of using facial
AUs to automatically detect errors in real-time during Programming
by Demonstration (PbD) scenarios. In addition, they suggested that
error detection using social signals might be generalizable to iden-
tify errors of different types and in different tasks [37]—though the
exploration was done between two different PbD tasks. Research
in this area is still in early stages, especially for physical human-
robot interactions. There has been little investigation into how to
incorporate social signals into a full error-aware robotic system
and what the advantages are by integrating it into the system.

3 TOWARDS FLEXIBLE, ERROR-AWARE HRI:
A CONCEPTUAL FRAMEWORK

Adapting from teamwork principles in aviation [16, 17], we define
error management as having four main aspects: (1) error detection,
(2) classification, (3) mitigation, and (4) recovery. We propose that
implicit human input—social signals—should be considered when
designing error-aware robotic systems that address either error
management as a whole or an aspect of it.

The general framework to error management [18] consists of
explicit handling (e.g., humanmanual reporting [14]) and/or implicit
domain-specific information (e.g., task tracking [7] and anomaly
tracking [32] ).While such status quo framework has the potential to
provide robust error management in particular tasks and expected
error types, it is too rigid to handle cross-context error management
and unanticipated error types [19].

We propose modifying the error-aware robot system framework
to consist of three layers of input: explicit markers, implicit domain-
specific markers, and implicit social signals markers, and assert that

https://github.com/intuitivecomputing/Response-to-Errors-in-HRI-Dataset
https://github.com/intuitivecomputing/Error-Aware-Robotic-System
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Table 1: Summary of dataset.
HRC-A HRC-C PbD

Grocery Case Study
Total duration (min) 151.11 257.50 25.05 23.47
Total duration
reaction to error (min) 1.73 5.72 3.03 2.61

# of participants 12 33 23 5
# of pre-programmed errors
per participant 2 2 1 3

Error type experienced physical
conceptual conceptual physical

physical
conceptual

generalization
# of cameras 2 1 2 2

this framework has the potential to allow flexibility across task
and error type (Figure 2). Social signals in response to errors are
commonly seen across people, task, and error types in non-social
tasks and with non-social robots. In addition, social signals have
the capacity to allow for earlier error management, as we will show
through the analysis of our dataset. We note that this additional
layer is meant to augment the status quo methods and is not neces-
sarily robust enough alone, because not everyone exhibits social
reaction [27] and people may overreact (novelty effect) [37] to robot
actions. Yet, the rich information provided by social signals allows
for new opportunities to capture unexpectedness and variability in
complex human-robot collaboration. In our work, we demonstrate
the potential of this framework and develop a real-time autonomous
error detection system using facial AUs.

4 SOCIAL RESPONSE TO ERRORS IN HRI:
A DATASET

To gain a more generalized understanding of humans’ natural re-
sponses to robot errors in physical-based interactions and to ex-
amine the potential flexibility benefit of adding social signals to
an error-aware framework, we curated a dataset from three HRI
studies. We collected natural reactions to unexpected robot er-
rors during physical-based, dyadic, human-robot interactions. Prior
works have introduced datasets that contain natural user responses
to robot errors (e.g., [21, 27]); however, none—to the best of our
knowledge—are open-source and focus on robot errors in physical
human-robot interaction.

Our dataset was collated from three studies varying in task, error
type, participants, robots, and scenario to enable analysis over a
diverse array of interactions; see Figure 3 for a visual overview
of the scenarios and Table 1 for a summary. Each data collection
had participants do a practice task before the actual one and the
resulting data was obtained from the actual trial. The data consists
of calculated facial AUs per timestep (a third of a second) using
OpenFace [3] on videos of the interactions. Each “entry” consists
of the AUs from one error sequence: pre-error, during error, re-
action to error, and post-error interactions. For all data, ground
truths were determined by two independent coders, indicated by
timesteps for perceived error start (when the coder is sure that the
error is happening), user reaction start (first instance, post-error,
where the participant’s face visibly begins to move), and user reac-
tion end (when the user’s behavior returned back to their normal
behavior). We evaluated the intercoder agreement using Intraclass
Correlation Coefficient (ICC), as the measures were on a contin-
uous scale, calculated using a two-way mixed, average measures,

absolute agreement model. ICC values between 0.75 and 0.90 have
good reliability and above 0.90 is excellent [23]. Based on these
values, all evaluated coded metrics had good and excellent coded
reliability.

Next, we present details of each data collection scenario includ-
ing information about the tasks, errors, and data collection process.

4.1 Scenario 1: Human-Robot Collaborative
Assembly (HRC-A)

The first set of data was collected in a human-robot collaboration
scenario, where participants actively completed part of the task
alongside the robot—a Kinova Gen3 arm—run by a completely
autonomous robotic system (as described in Section 5). Data was
collected using two synchronized static cameras in a real-time
system, recording video and calculating AUs for each timestep,
constructed on the Platform for Situated Intelligence (\psi) [6]. The
intercoder reliability was 0.986 for perceived error start, 0.891 for
user reaction start, 0.805 for user reaction end, and 0.998 for explicit
error reporting reaction time.

4.1.1 Task Context. The task had participants and the robot col-
laboratively build PVC pipe tables. The participants were supplied
with joints and an image of the structure they needed to build.
The participants could request a pipe by saying “Give me a [yellow
or green] pipe”, and the robot provided the requested pipe. It was
up to the participant to assemble the structure. During the actual
task, two pre-programmed errors happened (see section below for
details). The participants were able to verbally and explicitly report
errors using the phrase “Report error” any time during the task.

4.1.2 Error Manipulation. Two pre-determined robot errors oc-
curred, unexpected for the participant, during the actual task—a
physical error (failing to grasp a pipe) and a conceptual error (pick-
ing an incorrect pipe). Temporal error placement within the task
was determined to allow a minimum of nine pipe requests before
an error occurred; this choice was to let the participants develop a
mental model of the robot and reduce the novelty effect of working
with the robot. The ninth yellow pipe request triggered the concep-
tual error and the tenth green pipe request triggered the physical
one. Therefore, the errors materialized at different times depending
on how the user built the structure.

4.1.3 Participants. A total of 12 (8 male and 4 female) participants
were recruitedwith ages ranging from 18 to 63 (𝑀 = 26, 𝑆𝐷 = 13.14).
They had a medium amount of experience with technology (𝑀 =

4.09, 𝑆𝐷 = 0.67, a 7-point scale with seven being very experienced)
and little experience with robots (𝑀 = 2.25, 𝑆𝐷 = 1.14).

4.2 Scenario 2: Human-Robot Collaborative
Cooking (HRC-C)

Similar to the previous scenario, this scenario involved human-
robot collaboration, but used a UR5 robot arm—ran autonomously—
and did not use the same data collection system [5]. Instead, the data
was videoed through a camcorder and later fed through OpenFace.
The intercoder reliability was 0.983 for perceived error start, 0.826
for user reaction start, and 0.822 for user reaction end.
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Figure 3: Visual summary of the dataset, comprised of three data collections.

4.2.1 Task Context. The study, contextualized as a cooking task,
contained one between-subjects factor: recipe delivery method (ver-
bal delivery by robot vs. textual delivery). For the verbal condition,
we obtained 115.69 min of AUs (2.60 min containing reactions to
errors) and for the textual one 141.81 min (3.12 min containing
reactions to errors). Participants were given a recipe (method de-
pending on the factor) and received ingredients from the robot for
them to “cook”; the task consisted of two recipes.

4.2.2 Recipe Delivery Method Manipulation. For verbal recipe de-
livery, the robot provided step-by-step instructions verbally and
then gave the participants the respective ingredients. There was
also a written recipe provided on the side. For textual recipe de-
livery, participants were only given a step-by-step written recipe
and could request ingredients from the robot by saying “Please
give me [name of the needed ingredient]”. We note that the verbal
condition added social-based interaction to an otherwise purely
physical human-robot collaboration; therefore, another way to look
at this study is social vs. non-social instructional delivery.

4.2.3 ErrorManipulation. Regardless of the recipe deliverymethod,
participants experienced the same two pre-programmed conceptual
robot errors (i.e., giving incorrect ingredients). There was one error
per recipe, which occurred in the same place within the task for
each participant. Note that even in the verbal condition, which in-
troduces a social interaction to the physical collaboration, the error
was related to the physical task and not a conversational failure.

4.2.4 Participants. The dataset includes 33 participants (15 female
and 18male) with ages ranging from 18 to 60 (𝑀 = 26.21, 𝑆𝐷 = 9.50).
Seventeen participants were in the verbal delivery condition and 16
in the textual one. The participants were medium experienced with
both technology (𝑀 = 3.00, 𝑆𝐷 = 1.27 on a 5-point scale with one
as expert and five as beginner) and robots (𝑀 = 3.33, 𝑆𝐷 = 1.31).

4.3 Scenario 3: Programming by Demonstration
(PbD)

The last scenario was a kinesthetic Programming by Demonstration
with a Kinova Gen3 robot contextualized as a grocery unpacking
task. A follow-up study, situated as a pipe and joint sorting task, was
conducted to explore three types of errors: physical, conceptual,
and generalization. We obtained this data from prior work [37].
The intercoder reliability was 0.996 for perceived error start, 0.907
for user reaction start, and 0.975 for user reaction end. The grocery

and sorting tasks had participants “program” the robot (did not
affect the robot’s behavior as it was operated via Wizard of Oz)
and then observe the robot’s task execution. All errors were pre-
programmed into the robot’s execution. The dataset includes 28
participants (17 female and 11 male) with an age range of 18 to
39 (𝑀 = 23.72, 𝑆𝐷 = 4.43). Participants were experienced with
technology (𝑀 = 4.30, 𝑆𝐷 = 0.76 on a 5-point scale with one as
beginner) and less experienced with robots (𝑀 = 2.65, 𝑆𝐷 = 1.11).

4.4 Dataset Analysis
We analyze the dataset to understand what social signals are exhib-
ited in response to errors across these diverse interaction contexts.

4.4.1 Metrics. The values calculated below were derived from the
ground truth annotations of the dataset videos (performed by two
independent coders) and AU intensity outputs from OpenFace.

• Human Reaction Time (seconds). This measure computes
how quickly a participant reacted to an error; the difference
between user reaction start and perceived error start.

• Human Reaction Duration (seconds). This metric is the
length of visible reaction to an error, calculated as the differ-
ence between user reaction start and user reaction end.

• Percent Visible Error Reaction. This measure quantifies
the fraction of the error instances where participants reacted
over the number of error instances.

• Significant AU Predictors. Calculated using the Welch’s
t-test, this metric quantifies which AUs’ intensities collected
were significant in determining whether a timestep was an
error or non-error one. See Appendix for detailed analyses.3

The dataset is comprised of 126 error instances of which 79.53%
contained visible reactions to errors. Participants’ average human
reaction time to the errors was 3.00s (𝑆𝐷 = 3.30) and human reaction
duration was 7.28s (𝑆𝐷 = 6.20). Looking closer at the specific AUs
exhibited during the interactions, all AUs outputted by OpenFace
except AU_5 (upper lid raiser) and AU_25 (lips part) are significant
AU predictors. The error timesteps had higher intensities for AU_6
(cheek raiser), AU_7 (lid tightener), AU_10 (upper lid raiser), AU_12
(lip corner puller), AU_14 (dimpler), AU_15 (lip corner depressor),
AU_20 (lip stretcher), and AU_45 (blink) than non-error ones. The
error timesteps had lower intensities for AU_1 (inner brow raise),

3https://intuitivecomputing.github.io/publications/2023-hri-stiber-supp.pdf
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AU_2 (outer brow raiser), AU_17 (chin raiser), AU_23 (lip tightener),
and AU_26 (jaw drop) than the non-error ones.

4.4.2 HRC-A. Specifically for HRC-A, we see that the percent visi-
ble error reaction was 74.0% and that 83.33% of the 12 participants
reacted to errors. Their average human reaction time was 4.76s
(𝑆𝐷 = 4.16) ranging from -3.33s to 11.33s. The negative reaction
times are due to participants who reacted before perceived error
start, which is possible because these errors caused gradual devi-
ations in the robot’s trajectory. The human reaction duration was
3.63s (𝑆𝐷 = 2.87) with nine significant AU predictors: AU_1, AU_4,
AU_9, AU_14, AU_15, AU_20, AU_23, AU_25, and AU_45.

4.4.3 HRC-C. In the HRC-C scenario, 91% of the participants re-
acted to errors of which the percent visible error reaction was 73% of
the error instances. The human reaction time, on average, was 3.98s
(𝑆𝐷 = 4.13) and the average human reaction duration was 6.31s,
𝑆𝐷 = 6.84. There were 16 significant AU predictors, all but AU_15.

When separating the data into the two study conditions, there is
a statistically significant difference between participants’ reaction
times during the verbal (𝑀 = 5.49𝑠, 𝑆𝐷 = 4.08) and textual condition
(𝑀 = 2.47𝑠, 𝑆𝐷 = 3.67), 𝑡 (45.47) = 2.69, 𝑝 = .010. There was,
however, no difference in reaction duration between the verbal
(𝑀 = 4.92𝑠, 𝑆𝐷 = 8.49) and textual conditions (𝑀 = 7.49𝑠, 𝑆𝐷 =

4.42), 𝑡 (35.14) = −1.29, 𝑝 = .20. In addition, analyzing the difference
in reactions to errors during the two conditions revealed 11 AUs
are significant (AU_2, AU_5, AU_6, AU_7, AU_9, AU_10, AU_12,
AU_14, AU_17, AU_25, and AU_26).

4.4.4 PbD. The percent visible error reaction was 94.73% and the
participants’ human reaction time to errors was 0.24s (𝑆𝐷 = 1.64)
and reaction duration was 10.94s (𝑆𝐷 = 9.01). For the reactions, we
found that there were 16 significant AU predictors (all but AU_4).

5 AN INTERACTIVE ERROR-AWARE ROBOT
SYSTEM: AN IMPLEMENTATION EXAMPLE

From dataset analysis, we showed that social signals in response to
robot errors are fairly widespread and prompt across errors, tasks,
and scenarios. Therefore, we postulate that social signals are a piv-
otal input source for flexible, timely error detection in support of
successful error management. In this section, we illustrate how nat-
ural social reactions to robot errors may be used for error detection
in HRI. We first present computational modeling of people’s AUs
for error detection and classification of interaction context. We then
describe an example implementation of an interactive robot system
(Figure 4)—built on Microsoft’s Platform for Situation Intelligence
(\psi) [6]—that incorporates all three portions of our proposed error-
aware framework: explicit input, implicit domain-specific input,
and implicit social signal input. Currently, the system is configured
for the study described in Section 4.1, but it can be modified to
accommodate other HRI tasks.

5.1 Modeling Action Units for Error Detection
In modeling AUs for error detection, we explored two models; both
models were informed by prior work [37] that investigated how
social signals in human-robot interactions might be modeled to
detect robot errors. The first model consisted of two parts; the
first part was a binary classifier, which classified each AU timestep

as an error or no-error timestep, whereas the second part was a
sliding window that collated classified timesteps to determine if
an error indeed happened and when. The outputs were detected
error timestep (current timestep of the recent error detected) and
estimated error start (earliest timestep for current detected error that
is classified as an error). Different from prior work [37], we chose
to use a deeper and larger neural network for classification (input:
17, hidden: 64, 128 and 64, output: 2). The first model was trained
on the entirety of the dataset (three scenarios) and evaluated using
leave-one-out cross validation. The second model was structurally
the same as the first one, except that it was trained only on PbD
data and tested on the data obtained from the other two scenarios.

The purpose for employing these two models is two-fold: (1)
understanding error detection using AUs—if data quantity impacts
performance—via model comparison and (2) evaluating the poten-
tial generalizability of our approach across tasks and scenarios.

5.1.1 Performance Measures. We used the following metrics to
assess the model performance in detecting robot errors:

• Algorithmic Detection Delay (seconds). This metric mea-
sures the model’s delay in error detection; the mean differ-
ence between the detected error timestep and perceived error
start.

• Reaction Time Difference (seconds). This metric repre-
sents time difference between the error detection and the
user’s response to the error; the average difference between
algorithmic error detection and user reaction start.

• Internal Decision Delay (seconds). This metric computes
the average difference between the algorithm’s detected error
timestep and estimated error start.

• False Positive Rate. This quantifies the average number of
false positives detected per trial. A false positive is defined
as when the algorithm’s detected error timesteps do not
coincide with the coded participant’s reaction to the error.

• False Negative Percentage. This calculates the fraction of
error instances that were not detected by the model.

In addition to evaluating model performance, we used the data
from HRC-A to examine the potential gain in time to detect possible
robot errors using social signals. Particularly, we used the following
measure to quantify the potential:

• Social Signal Potential (seconds). This metric represents
the difference between user reaction start and when the par-
ticipant verbally reported the error, explicit error reporting
reaction time (seconds)—defined as the difference between
the verbal error reporting and perceived error start.

5.1.2 Model Performance Analysis. We compared model 1’s (more
training data) performance with model 2’s (less training data) to
explore the influence of data size on error detection. For evaluating
our approach’s generalizability, we contrasted model 2’s leave-one-
out cross validation performance on PbD with its test performance
on the other two HRC scenarios. Table 2 details the two models’
performances for detecting errors using our dataset.

Data Size Influence. Comparing error detection performance
between the two models, with respect to PbD, shows that model 1
is about the same in detection (model 1: 4.31 ± 4.11, model 2: 4.27
± 3.06); had a 0.27 higher false positive rate (model 1: 0.75 ± 0.75,
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Figure 4: Example autonomous error-aware robotic system diagram. Left diagram illustrates the components of the example
system and flow of information. (1) The system records speech commands, executes speech recognition, and sends the command
to the robot controller. (2) The robot controller tells the robot to execute a sequence. (3) The perception component records
video, processes it through OpenFace, and sends the AUs to the error management component. An error would be detected
using a trained model, verbally mitigated using acknowledgement, and repaired via a command to the robot controller. (4) The
robot controller receives the repair command and sends a command to the robot to run a pre-programmed repair sequence.

Table 2: Summary of the performance of the two models on the dataset. The grayed rows in the table are the breakdown of
the dataset by data collection scenario. Model 1 was trained on the complete dataset and evaluated using leave-one-out cross
validation. Model 2 was trained on PbD, evaluated on the two HRC scenarios, and leave-one-out cross validated on PbD.

Algorithmic Detection
Delay

Reaction Time
Difference

Internal Decision
Delay

False Positive
Rate

False Negative
Percentage

Complete Dataset 5.54 ± 4.91 2.88 ± 4.09 2.61 ± 0.85 1.10 ± 1.07 30.70%
HRC-A 5.00 ± 6.46 -1.61 ± 4.85 2.72 ± 0.71 1.17 ± 1.47 61.11%
HRC-C 6.60 ± 5.10 2.72 ± 3.23 2.71 ± 0.65 1.36 ± 1.15 25.00%

M
od

el
1

PbD 4.31 ± 4.11 4.04 ± 4.35 2.49 ± 1.09 0.75 ± 0.75 5.55%

HRC 6.78 ± 4.82 3.06 ± 5.07 2.51 ± 0.48 1.21 ± 1.12 45.45%
HRC-A 6.17 ± 4.80 2.13 ± 4.17 2.60 ± 0.52 1.90 ± 1.60 44.44%

M
od

el
2

HRC-C 7.00 ± 4.90 3.36 ± 5.39 2.48 ± 0.48 0.96 ± 0.79 45.83%
PbD (Cross Validation) 4.27 ± 3.06 4.02 ± 3.10 2.87 ± 0.51 0.48 ± 0.70 28.95%

model 2: 0.48 ± 0.70); and was 23.40 lower in false negative percent-
age (model 1: 5.55%, model 2: 28.95%) than model 2. For detection
performance on HRC-A, when compared to model 2, model 1 was
about 1.17s faster (model 1: 5.00 ± 6.46, model 2: 6.17 ± 4.80); had
a 0.73 lower false positive rate (model 1: 1.17 ± 1.47, model 2: 1.90
± 1.60); and was 16.67 higher in false negative percentage (model 1:
61.11%, model 2: 44.44%). Additionally, for HRC-C, when compared
to model 2, model 1’s performance was quite similar in detection
(model 1: 6.60 ± 5.10, model 2: 7.00 ± 4.90); had a 0.4 higher false
positive rate (model 1: 1.36 ± 1.15, model 2: 0.96 ± 0.79); and was
20.83 lower in false negative percentage (model 1: 25.00%, model 2:
45.83%).

Generalizability.Model 2’s performance on HRC-A, when com-
pared to PbD, was 1.90s slower in detection (note the human reaction
time was 4.52s slower); 1.42 greater false positive rate; and 15.59
higher in false negative percentage. When comparing its perfor-
mance on HRC-C with PbD, we show that error detection was 2.73s

slower (human reaction time was 3.74s slower); had a 0.48 greater
false positive rate; and 16.88 higher in false negative percentage.

5.1.3 Social Signal Potential Analysis. Participants’ average explicit
error reporting reaction time was 12.41s (𝑆𝐷 = 3.86) after the per-
ceived error start, though it ranged from 7.33s to 25s. On the other
hand, the social signal potential was 7.56s (𝑆𝐷 = 4.71), ranging from
0.67s to 4.71s.

5.1.4 Integration with Error Management. Since modeling social
signals for error detection proved to be feasible, our example robot
system currently includes a simplified version of error management
(with a focus on detection): error detection, mitigation through ver-
bal acknowledgment, and pre-programmed recovery. It implements
the three layers of explicit and implicit error input. We note that
the acknowledgment strategy can be swapped out for code, for
example, that automatically creates explanations or apologies.
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Explicit Error Detection. The explicit indicator is the verbal
command “Report error” spoken by the participant. This reporting
can be done anytime during the interaction. Once reported, the ro-
bot acknowledges the error, sends a message to the robot controller
that an error occurred, and executes a recovery sequence.

Implicit Error Detection. Implicit error detection is a combina-
tion of domain-specific and social signal input. The domain-specific
inputs for the system are if the robot is moving and command
count. They are treated as filtering for automatic detection using
the implicit social signal (AU) input. The AUs are fed into an error
detection algorithm, same as model 2 in Section 5.1.2, which can be
easily swapped for another. If the algorithm detects an error, it can
only report it if the robot presently is moving, as a robot can only
make an error when it is moving for our use case, and the command
count is above a threshold. The current domain-specific inputs used
are tailored for our particular task and should be changed for oth-
ers. The reason why we used it this way is that AUs as input is a
sometimes ambiguous information source, reactions do not discern
between positive or negative (i.e., errors) robot actions causing false
positives [37]. In addition, if an error is detected using AUs, the ro-
bot queries the participant on whether an error actually happened
as an additional false positive screening mechanism. An affirmative
response by the participant causes the robot to acknowledge the er-
ror, notify the robot controller that an error occurred, and execute a
pre-programmed recovery sequence. The system’s automatic error
detection using AUs can also be turned off so that there is only
explicit error detection, done for the study described in Section 4.1.

5.2 Error Context Classification
Another use for social signals, other than error detection, is error
context classification. As shown in Section 4.2, the HRC-C dataset
contained two conditions in which the same errors occurred: social
(verbal) and non-social (textual). In addition, through behavioral
analysis of the same dataset, there was a statistically significant
difference in AU intensities between the reactions to the errors for
the two error contexts, prompting us to explore the possibility of
using AUs to classify error context.

To this end, we developed an algorithm that consisted of a three-
layer binary classifier (input: 17, hidden: 64, 128 and 64, output: 2),
classifying one timestep at a time, and a function that combines a
series of classifications for a single output. The input was a window
of timesteps of 17 AU intensities. The output of the algorithm is
a single classification of whether the error occurred in the social
or non-social context. The model was trained on the AU intensi-
ties for the ground truth marked error timesteps from HRC-C. We
evaluated the algorithm using leave-one-out cross validation. The
algorithm was fed in an error detection window (timesteps between
estimated error start and detected error timestep) outputted from the
machine learning algorithm described in Section 5.1 for HRC-C. The
algorithm’s classification accuracy was 92.31%. We note that this
algorithm can be run in real-time and integrated into this system.

5.3 Other System Components
The example system (shown in Figure 4) has two other integrated
components besides error management (described in Section 5.1.4)—
(1) a robot controller to allow it to autonomously run the robot

and respond to voice commands and (2) a perception system that
takes and processes sensor input (e.g., extracting AUs) for robot
operations and necessary error management.

5.3.1 Robot Controller. Much of the implementation in this com-
ponent is robot and task dependent: in our case, Kinova Gen3 and
assembly task. Our system enables the robot to respond to verbal
commands, input for the robot controller. Upon a valid command,
the system sends a message to the controller to run the correspond-
ing action. Once an action finishes executing, it messages back to
the system that the robot is no longer moving and readies for the
next command. Also, the controller can pause and stop the robot’s
execution of an action. The error management component uses this
mechanism to interrupt the robot’s current action for necessary
mitigation when an error is detected.

5.3.2 Perception System. The perception system takes and syn-
chronizes input from two cameras and a microphone in real-time
using \psi. Additionally, it sends verbal commands to the robot con-
troller and processes the video feed through OpenFace to extract
AUs. Once the AUs per timestep are calculated, this component
sends the AUs, as well as whether the robot is moving (received
from the robot controller), to the error management component.

6 DISCUSSION
In this work, we propose an error-aware framework (including
social signals as an implicit input) to provide error management
techniques the flexibility to address unexpected errors in various
interaction scenarios. To demonstrate the utility of social signals, we
shared, analyzed, and modelled a natural-response-to-error dataset
showing that AUs are prevalent and have the potential to be used for
error detection across tasks, errors, and scenarios. We additionally
showed that modeling social signals has the potential to detect
errors before a user’s explicit error reporting.

6.1 Social Signals as Error-Aware Input
Our dataset shows that regardless of the scenario, error, and task,
people exhibit social signals to unexpected robot errors during
physical-based human-robot interaction. About 80% of the error
instances had visible responses with a response time of 3.00s. Even
during active collaboration (HRC-A), where participants were also
working and not necessarily tracking the robot’s execution other
than to retrieve an object the robot had placed, participants reacted
to the robot’s errors promptly (𝑀 = 4.18𝑠, 𝑆𝐷 = 4.13). We found
that participants often checked the instructions before reacting
contributing to the reaction time.

However, when looking at the three scenarios, the natural re-
sponses elicited from errors were different depending on the in-
teraction contexts, according to the significant AU predictors (Sec-
tion 4.4). The response diversity is especially exemplified by the
two interaction conditions of HRC-C: verbal (social) and textual
(non-social). Despite experiencing the same error, participants’ AU
reactions to it were distinctive between the two contexts: 11 AUs
were statistically significant in distinguishing between the two. In
Section 5.2, we further showed that it is possible to classify the
context in which the error occurred given a window of “error” AUs.
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6.1.1 Data Size Influence on Error Detection. In spite of the diver-
gent human responses to errors, use of social signals as input for
error detection results in timely detection. Using a larger set of
responses as a training set (Model 1) appears promising to signifi-
cantly reduce the number of false negatives, especially in reference
to HRC-C and PbD (HRC-C: decrease of 20.83%, PbD: decrease of
23.40%). However, a smaller dataset (Model 2) does seem to have
relatively comparable performance with respect to detection timeli-
ness, within 1.24s for across the entire dataset. Increasing the data
size improves reliability, but the detection timeliness is a function of
the overall system design and not simply the modeling algorithm.

6.2 Flexible Error-Aware Framework Potential
Adding social signals as another implicit input in the error-aware
framework provides timeliness and flexibility in error detection.

6.2.1 Generalizability of Social Signal Modeling for Error Detec-
tion. Our results showed that it is possible to detect errors in one
scenario (HRC) using a social signal model trained on a different
scenario (PbD). Model 2 was trained on PbD; when compared to the
cross validation performance of detection delay on PbD, it showed
a longer delay on HRC-A and HRC-C. The most notable difference
between cross-validated performance on PbD and test performance
on the HRC scenario was that the model had a larger false negative
percentage under domain shift. Overall, our results are similar to
that of a prior work [37], also seeking to examine the potential
generalizability of modeling social signals for error detection. The
challenge faced by domain shift in social signal-based error detec-
tion, however, may be managed by explicit indicators and implicit
domain-specific input; together, the three layers of input promise
to afford reliable and flexible error detection.

6.2.2 Error Detection Timeliness. Social signals also have the po-
tential to improve the timeliness of error detection following our
error-aware framework. As illustrated in Section 5.1.3, reactions
to errors are 7.56s faster than having participants manually report-
ing errors. Depending on the error, participants could in fact react
before perceived error start if the error developed slowly.

If we were to look at the performance of model 1 (as defined
in Section 5.1) on HRC-A data, we were able to detect error 5.80s
(𝑆𝐷 = 4.30) faster using social signals than the explicit response.
For model 2, the error detection was 10.56s (𝑆𝐷 = 13.08) faster than
explicit error reporting reaction time. However, it is important to note
that not all participants visually reacted to errors so maintaining
the other two input streams is important.

6.3 Limitations
One limitation for using social signals as input in an error-aware
framework is that such use requires humans to pay attention to the
robot and task, allowing them to reflexively respond in a timely
manner. Also, factors that affect the speed and observability of the
reaction could include task difficulty in human-robot collaboration,
amount that a person values robot performance and task outcomes,
and a person’s instinctive reaction mode (could be no response).

6.3.1 Dataset. Although our dataset provides an illustration of AU
responses to errors in a diverse array of interactions, it does not
necessarily contribute a comprehensive image of all reactions, task

types, and error types. Currently, the dataset only contains AUs,
but there are other ways in which humans naturally respond to
errors (e.g., verbal, gaze, head movements) [27, 38]. In fact, for many
of the HRC error instances, gaze would be an insightful indicator
as many participants seemed to follow a similar pattern post-error.
In addition, for the data collected in HRC-C scenario, it is missing
some small fraction of the AU responses to errors. The loss in AUs
corresponds to when the robot passed in front of the camera, ob-
scuring the view of a participant’s face. Another limitation is that
the tasks used, while representative of many interaction modes in
human-robot interaction, were all highly structured interactions,
where potentially domain-specific task tracking could detect er-
rors with high accuracy. Though, it is important to note that using
domain-specific information would not be flexible enough to “cross-
detect” errors in the other tasks. In addition, because the dataset
was annotated using coders watching the video, the error annota-
tions might not reflect subtler reactions that are not visible to the
eye but are quantifiable and detectable using OpenFace. Therefore,
the reaction times and durations to errors could be dependent on
reaction magnitude.

6.3.2 Interactive Error-Aware Robot System. As with many robot
systems designed to interact with people closely, our error-aware
system is highly dependent on appropriate camera placement for
the task. We tried to combat this issue by having two cameras as
input, but we found out placing the cameras farther apart and at
a greater angle reduced the continuity of AU detection between
the two cameras. In addition, we currently use the domain-specific
input only as a technique to filter the false positives generated from
the AU modeling machine learning. However, we could improve
error detection performance by modeling that input source and
fusing it with the social signal model for error detection.

6.4 Implications for HRI and Future Work
Our exploration showed that including social signals as input in
the error-aware framework potentially improves the flexibility and
timeliness of error detection. We are scratching the surface of social
signal-based detection. Future implementation of the framework
may consider other behavioral channels and finer grained infor-
mation from facial expressions or other social signals. In addition,
future research should assess the benefits of the error-aware frame-
work on human-robot teaming in terms of trust and willingness to
work with the robot after an error has been managed. We should
also consider what it means for a system that employs the error-
aware framework to be successful in terms of the collaboration
and with what metrics success should be determined. For model-
ing social signals for error detection in the physical human-robot
interaction domain, we should develop alternative ways to model
AUs in response to robot errors that involve treating them tempo-
rally as opposed to within isolated timesteps. Research should also
explore the use of social signals as input for error classification—
whether that be error contexts, severity, or type—providing more
information to help with error mitigation and recovery.
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