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I. INTRODUCTION

Recent years have seen a growth in the number of indus-
trial robots working closely with end-users such as factory
workers [14]. This growing use of collaborative robots has
been enabled in part due to the availability of end-user robot
programming methods that allow users who are not robot
programmers to teach robots task actions [2] . Programming
by Demonstration (PbD) is one such end-user programming
method that enables users to bypass the complexities of
specifying robot motions using programming languages by
instead demonstrating the desired robot behavior [21, 8].
Demonstrations are often provided by physically guiding the
robot through the motions required for a task action in a
process known as kinesthetic teaching.

Kinesthetic teaching enables users to directly demonstrate
task behaviors in the robot’s configuration space, making it a
popular end-user robot programming method for collaborative
robots known for its low cognitive burden [6, 19, 15]. How-
ever, because kinesthetic teaching restricts the programmer’s
teaching to motion demonstrations, it fails to leverage infor-
mation from other modalities that humans naturally use when
providing physical task demonstrations to one other, such as
gaze and speech (e.g., [16]). Incorporating multimodal infor-
mation into the traditional kinesthetic programming workflow
has the potential to enhance robot learning by highlighting
critical aspects of a program [16], reducing ambiguity [22],
and improving situational awareness [18] for the robot learner
and can provide insight into the human programmer’s intent
and difficulties [22]. In this extended abstract, we describe a
preliminary study on multimodal kinesthetic demonstrations
and future directions for using multimodal demonstrations to
enhance robot learning and user programming experiences.

II. PRELIMINARY EXPLORATION OF MULTIMODAL ROBOT
PROGRAMMING BY DEMONSTRATION

We conducted a preliminary exploration of multimodal
robot programming by demonstration with 11 users, which
included users with and without prior robot programming ex-
perience. Participants were instructed to demonstrate six tasks
to the robot, which variously involved pick-and-place actions,
stacking, pouring, and insertion (Fig. 2), through kinesthetic
teaching and by speaking aloud. For each demonstration, we
recorded the robot’s first-person view collected from its wrist
camera and the positions, velocities, and forces of its joints
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Fig. 1. We explore multimodal data from programmers’ kinesthetic demon-
strations and argue the importance of incorporating natural multimodal cues
from human teachers to enable effective robot learning and assisted end-user
robot programming.

(Fig. 1). In addition, we recorded the user’s gaze and first-
person view collected using a Pupil Invisible gaze tracker, their
speech, and their input forces on the robot’s end effector using
a force-torque sensor. We also recorded a third-person view of
the programming process using a stationary webcam. Below,
we describe key observations from our initial exploration of
multimodal PbD, with a focus on programmers’ narrations
during kinesthetic teaching.

A. Highlighting Important Aspects for Learning

Prior work on programming by demonstration has relied
on approaches such as clustering multiple task demonstrations
(e.g., [3]) or segmenting one-shot demonstrations (e.g., [7]) to
develop skill models that capture the essential robot motions
and configurations required for a task. We found that having
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Fig. 2. Participants demonstrated six manipulation tasks in our study: pick-and-place, pick-and-place with distractor objects, stack with obstacles, stack
tower, pour objects, and insert objects.

programmers speak aloud during kinesthetic teaching can help
with the process of capturing critical low-level and high-level
aspects of a task within a single demonstration.

Participants often verbalized how the robot should be
positioned with respect to task-relevant objects (e.g., “I’m
going to move the gripper over to the block so the gripper’s
positioned directly above it” (P6), “I’m gonna move the
robot over and move the gripper parallel to the table but
in the other way” (P3)), as well as stating the direction
(e.g., “So I’m moving the robot over to the right, um, taking
it right above as close as I can” (P8)) and speed (e.g.,
“I’m gonna position the gripper over the block and then
slowly close the gripper” (P6)) of demonstrated motions. In
addition, participants occasionally repeated particular phrases
in succession to indicate the length of time a motion should
continue (e.g., “close close close close” (P2) throughout the
duration of a grip, “Keep going. Keep going. Keep going.” (P5)
throughout a continuous trajectory). Participants also indicated
key robot configurations within a demonstrated task using
phrases such as “hold here” (P1) and “record” (P11) and
described the level of care required for particular motions
(e.g., “Lower the object very carefully” (P11), “I need to

“Uh okay, so I need to get the gripper to be over the object... 
so that when the gripper closes, it’s not going to knock over the boxes.”

Fig. 3. Participants described their actions in terms of objects in the envi-
ronment when narrating their demonstration, which can enable demonstrated
motions to be contextualized within the task environment, including in terms
of constraints such as obstacles.

gently pick it up without hurting the other two paper boxes”
(P10)). Participants’ verbal descriptions helped contextualize
the motion trajectories and waypoints traditionally used for
PbD in terms of the task environment and constraints and may
be used to associate demonstration waypoints with reference
frames (e.g., [4]) (Fig. 3).

In addition to pinpointing aspects of the motion that are
important for learning, participants’ speech also focused on
higher level characteristics of the demonstration related to task
order, demonstration goals, and error avoidance. Participants
indicated the sequence of actions required for the task (e.g.,
“Let it go in a little bit, and then drop it” (P9)), along with
preconditions necessary for any of the task steps (e.g., “Once
it’s about in line with the hole I’m going to click open and
then try again” (P8)). Some participants began their demon-
stration with a summary of the overall task and goal (e.g.,
“We’re gonna put the figures, the cubes into its corresponding
shape, starting with the blue one, and then the yellow, and
then the red” (P7)). Similarly, participants’ gaze occasionally
“summarized” the task in terms of relevant objects at the
beginning of the demonstration (Fig. 4). Participants also
provided warnings about potential errors to avoid throughout
their demonstrations, especially related to physical obstacles
(e.g., “Make sure that when the gripper closes it’s not gonna
hit the table” (P6), “Bring the robot back up slowly to avoid
colliding with the cardboard boxes” (P1)). Participants’ gaze
cues also focused on potential obstacles, which was in line
with findings from previous work on using human gaze for

Fig. 4. Participants looked at all relevant task objects at the beginning
of the demonstration, providing a “summary” of the object targets of the
demonstrated task. The center of the red circle indicates the participant’s
gaze.



assisted teleoperation [5]. Multimodal kinesthetic teaching
enables identification of relevant task targets, obstacles, and
actions for each portion of a demonstration.

B. Pinpointing Program Suboptimalities

While some demonstration errors correspond with clear
signals, such as the robot’s emergency stop triggering, others
may be more difficult to identify. Multimodal cues can reveal
which parts of a programmer’s demonstration are suboptimal
or erroneous in terms of task efficiency or probability of
success. For example, participants often indicated when the
robot reached a joint limit during the demonstration (e.g.,
“The gripper can’t really go down any further” (P6), “Moving
the elbow is going to be hard. Okay, I think I’m at the max
of the joint.” (P4)), when they can’t grip an object from the
optimal approach (e.g., “I’ll have to pick it up from, uh, like
at an angle” (P4), “I will probably just try a bad angle like
this” (P5)), or when they didn’t get a good grip on the object
with the end effector (e.g., “Now I’m gonna use the close
gripper [command] to grab the block, ah that didn’t work so
I’m gonna open it.” (P1), “Oop, bad grip.” (P4)). These mo-
tion suboptimalities could also be identified by discrepancies
between the force input by the user and the resulting positional
change of the robot’s joints (Fig. 5). Suboptimal actions in a
demonstration often corresponded with participants expressing
uncertainty of the actions’ success (e.g., “It’s at an angle so
I’m not sure if it’ll go in.” (P3), “If it doesn’t stumble, I think it
will work now” (P4)) or laughing. In many cases, participants
directly indicated when their demonstration failed or when an
error occurred in the course of a demonstration (e.g., “Oops, I
put the arm too far down so I’m gonna move it up a bit” (P6),
“The angle was a little bit too much so it bounced off position”
(P7)). On the other hand, participants also provided positive
feedback when the robot was at a good configuration during
the demonstration (e.g., “That looks like a good position to
grab” (P7)) or when the demonstration was going well by
giving quick responses such as “good” or “perfect” after a
task step. Overall, multimodal cues helped distinguish which
portions of a demonstration indicated what the robot should
do and which did not.

C. Revealing User Challenges and Intent

Multimodal cues can indicate challenges users are facing
during kinesthetic teaching. Participants frequently indicated
when they were having trouble with an aspect of the kines-
thetic demonstration (e.g., “Little hard to find the right angle”
(P6), “Struggling a little bit with how far the robot can go”
(P4)). Participants also asked questions, directed at themselves,
while narrating the demonstration when they encountered a
challenge (e.g., “How do you even grab this?” (P9), “Can I
open it? I should open it, right?” (P4)). When encountering
difficulties with a motion, such as reaching the correct align-
ment or grip, participants’ gaze tended to shift rapidly between
targets, such as the robot’s joint and the task object (Fig. 6),
which aligns with previous work indicating that users tend
to look at problematic joints when experiencing challenges in
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Fig. 5. Common motion suboptimalities and difficulties encountered by
participants included: (1) encountering a joint limit, which resulted in low
positional change in response to user input force and (2) having to change
their contact point away from the robot’s wrist to maneuver out of a joint
limit.

moving a robot [5]. Behavioral cues indicating user frustration
and fatigue included sighing and frequent shifts of body
posture (e.g., bending, changing contact point with robot) (Fig.
5).

In addition to difficulties, users also described the reasoning
behind their actions during kinesthetic teaching (e.g., “Um, so
if I were to do it right now, they would fall off to the side, so I
want to move the arm a little bit closer to itself.” (P7), “So I’m
first moving the robot over and twisting it so that I can close
on the edge of the cup” (P8)). Participants also clarified which
portions of a demonstration were allocated towards trial and
error or brainstorming purposes (e.g., “Okay, let’s see how
we can move these things. Okay, this moves like that. This
thing should move this way. Okay, that doesn’t tip” (P9), “I’m
taking a pause to find out the right angle.” (P4)). Multimodal
cues provide insight into programmers’ intent and challenges
and can signal which parts of a demonstration are intended
for human learning (e.g., becoming familiar with the robot’s
capabilities and constraints) rather than for robot learning (e.g.,
functional motions).

III. IMPLICATIONS OF MULTIMODAL ROBOT
PROGRAMMING BY DEMONSTRATION

For robots to fully leverage the rich set of information
available in a human teacher’s demonstration, they must move
beyond solely considering motion aspects of a demonstration.
Demonstrations that include the multimodal cues that humans
naturally use in teaching, such as gaze and speech, can provide
a range of information, from task sequence and goals to
programming difficulties, and can pave the way for improved
robot learning and easier robot programming.

A. Robot Learning with Multimodal PbD

Just as humans make use of multiple modalities such as
vision, speech, and sound to obtain a coherent understanding
of their environment [9], robots may obtain a more complete



Fig. 6. Rapid gaze shifts from robot joints to target objects tended to indicate difficulties with a particular motion such as reaching an optimal end effector
alignment.

understanding of how a demonstration is situated within a task
environment by taking into account multiple modalities in a
demonstration, including the human teacher’s speech, which
can provide semantic information on task objects, and gaze,
which can highlight which environmental factors are relevant
for the task at hand. Multimodal cues from a human teacher’s
demonstration can also help robots obtain an understanding of
the principal steps involved in a task. In line with prior work
indicating humans teach robots using structured processes
[20], our study participants frequently stated task steps in
terms of action preconditions and effects, which can be used
by robots for developing task plans automatically based on
human demonstrations (e.g., [12, 17]).

Multimodal PbD can help robots utilize information more
effectively within a single demonstration. Multimodal cues
can indicate the human demonstrator’s focus, which can in
turn reveal which aspects of a demonstration are critical to
the task being learned (e.g., speed, force, particular configu-
rations, action preconditions, obstacles) and which aspects the
robot may have more freedom to stray from (e.g., approach
angle for gripping an object). Because multimodal cues can
reveal programmer intent and include real-time feedback on
a demonstration, they can help robots distinguish between
good and failed or suboptimal demonstrations and effectively
use a demonstration in its entirety by using portions of a
demonstration that correspond to positive teacher feedback
to learn what to do and portions of a demonstration that
corresponded to negative teacher feedback, program subop-
timalities, or programming difficulties to learn what not to
do (e.g., [10]). By taking advantage of additional information
on how to successfully perform a task and avoid erroneous
behaviors from a single demonstration, effective robot learning
may occur with a smaller quantity of demonstrations from a
human teacher.

B. Assisted Robot Programming with Multimodal PbD

Multimodal cues can signal when programmers are en-
countering difficulties during robot programming. Because
interaction modalities such as gaze and speech precede motion
during kinesthetic teaching, multimodal behavioral signatures
indicating programming difficulties can be identified and
difficulties can be prevented early on in a demonstration.
Developing programming assistance triggered by multimodal
cues, such as autocompletion for pick-and-place tasks or
help maneuvering away from a joint limit, may improve the

programmer’s experience during robot programming and may
reduce programmer challenges stemming from the high phys-
ical workload involved in kinesthetic teaching (e.g., [19, 1]).
Assistance triggered by the programmer’s multimodal data
may also help optimize users’ demonstrations by reducing the
amount of robot motion unrelated to the task at hand within a
demonstration (e.g., alignment motions or wrangling the robot
into a specific configuration).

IV. CONCLUSION AND FUTURE WORK

In this abstract, we presented initial observations into
the range of information that narration, gaze, motion, and
force data can provide for task learning and assisted robot
programming. While prior work has investigated multimodal
PbD that takes into account users’ motion demonstrations
and speech (e.g., [13]), we believe a multimodal learning
approach that takes into account the programmer’s gaze and
speech and considers motion and force cues indicating user
challenges can enable better robot understanding of human
demonstrations and more personalized assistance to facilitate
easier robot programming by demonstration. Our future work
will involve developing computational models that predict
when the programmer is experiencing difficulties, such as
challenges in maneuvering the gripper to be in line with the
target object, based on behavioral signatures such as those
observed in our initial study (e.g., Figs. 5 and 6). By drawing
off of natural multimodal human teaching processes, we aim to
minimize the burden of the human teacher in providing optimal
demonstrations while expanding the available resources for the
robot to understand a teacher’s demonstration.

ETHICAL IMPACT STATEMENT

Modeling users’ multimodal cues to improve robot learning
and provide online assistance during kinesthetic teaching can
benefit users by reducing the user burden in providing large
quantities of high-quality demonstrations to the robot learner
and in performing complicated maneuvering during kinesthetic
teaching. This can help further lower the barriers in robot pro-
gramming for everyday users of collaborative robots. However,
such an approach may also involve risks in the long term. Prior
work has suggested that end-users without professional pro-
gramming experience may be more likely to rely on shortcuts
and workarounds during programming [11]. Multimodal data-
driven online programming assistance and multimodal robot



learning that is robust to program suboptimalities may en-
courage programmer overreliance on robot learning algorithms
and system assistance, possibly encouraging the practice of
sloppy programming behaviors from end-users in the long
term. Furthermore, online programming assistance based on
multimodal cues will involve shifting control over program
specification from the human-teacher to the robot learner.
While such an assisted programming approach may result in
more optimal and robust programs, it could also overly disrupt
users’ programming workflows or their mental models on how
their program works.

Our goal with this work is to use users’ multimodal cues as a
means to improve users’ experiences with robot programming
by minimizing difficulties in kinesthetic teaching. However, we
acknowledge that data-driven programming assistance may not
always be warranted or desired and could lead to programmer
overtrust and automation bias in the long-term. We encourage
further work into understanding end-users’ perceptions of
personalized assistance in real-world scenarios. In particular,
future work that builds off of multimodal data-driven robot
programming should examine whether users are able to re-
cover from failed online assistance based on misconstrued
multimodal cues and whether multimodal programming by
demonstration encourages suboptimal teaching from users in
the long term.
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