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Figure 1: We examined communicative acts used for mental synchronization in situated human task demonstration. 
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1 INTRODUCTION 
Efective knowledge transfer between humans and machines is 
critical to the future of work in which humans and machines are 
envisioned to collaborate closely. A common way of human knowl-
edge transfer is through physical demonstration. This is especially 
true for tasks that are spatially structured and require motor skills, 
such as assembly and repair of structural parts. During physical 
task demonstrations, people use a range of communicative acts, 
such as eye gaze, gestures, and head nods, to build and synchronize 
perceptual and procedural common ground [5]. The key insight 
driving the present exploration is that people’s natural communica-
tive acts are integral to the understanding and learning of a task. For 
example, in an episode of establishing joint attention, an instructor 
displays a referential gaze cue toward a task object of interest and 
then looks back at the learner; the look-back gaze behavior is meant 
to check whether the learner followed the attentional cue, thereby 
implicitly underscoring the relevance and importance of the object 
of reference in the demonstrated task. 

In this paper, we report an observational study examining why 
and when human instructors use gaze to check on learners during 
physical task demonstrations, as well as how the learners respond 
with backchannel signals, to synchronize mutual understanding. 
This examination ofers an empirical understanding of knowledge 
transfer in physical demonstrations. Its fndings provide implica-
tions for enabling productive robot teaching and learning from 
human task demonstrations. 

2 BACKGROUND 
Grounding refers to the interactive process by which individu-
als build mutual understanding and maintain a common culture 
for their conversations or collaborative activities [5]. During the 
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grounding process, an individual monitors other individuals for 
signs of understanding and provides explicit or implicit feedback to 
mitigate misunderstanding [4]. Grounding can be achieved through 
a combination of behavioral channels during collaborative tasks. 
For example, a speaker may point or use representational gestures 
to indicate their intention [8], utilize mutual visual space to coor-
dinate activities [12], and exhibit gaze cues to direct and establish 
joint attention [21]. 

Acting as a function of both perception and signaling [14], gaze 
can be used to monitor conversational partners for understand-
ing, regulate conversation, and express conversational intention 
[1]. Exemplifying its versatility, gaze direction and duration varies 
depending on whether one highlights information, seeks approval, 
or signals willingness to communicate [15]. For example, although 
speakers tend to look at each other’s faces during conversation [3], 
they tend to look at the workspace and task related targets during 
co-located collaborative physical tasks [7]. 

Also critical to grounding is backchanneling, when a listener 
directs a simple verbal or non-verbal response back to a speaker 
during conversation. It indicates that the listener follows and is 
paying attention to the speaker, and may infuence the speaker’s de-
sire to continue talking. Common examples of backchannel signals 
are nods and short utterances such as "uh huh, yeah". Nodding in 
particular is meant to signal that the listener understands without 
interrupting the speaker [16, 20]. 

Prior research in HRI has investigated how to design communica-
tive social cues, such as backchannel signals (e.g., [11, 13]), gaze (e.g., 
[2, 10]), and gestures (e.g., [9]), for robots to participate in produc-
tive joint activities with people. Diferent from these prior works, 
this study focuses on understanding how natural communicative 
cues are exhibited during situated learning interactions and how 
such understanding may inform the development of productive 
robot teachers and learners. 

3 DATA COLLECTION AND CODING 
We conducted a data collection study to understand the behav-
ioral cues projected and processed during situated task demonstra-
tions. In our study, one participant, the instructor, taught the other 
participant, the learner, one of the two assembly tasks: Pipe and 
Lego (Figure 2). The participants then switched roles in the other 
assembly task. Both tasks involved spatial awareness and repeti-
tive assembly of structures. On average, pipe teaching interactions 
(� = 7.03, �� = 1.25) were comparable in minute duration to Lego 
teaching interactions (� = 7.48, �� = 2.17). 

Lego:
Airplane

Lego:
Elephant

Pipe:
view 1

Pipe:
view 2

Figure 2: The pipe and Lego structures used in our study. 

3.1 Procedure 
Upon consenting to participate in this study, participants completed 
a brief background survey covering their age, area of study, previ-
ous teaching or tutoring experience, and spatial awareness skills. 
Additionally, they completed the Big Five Personality Test [6]. 

Participants then entered a phase of self-teaching at their respec-
tive stations, separated by a divider. They were randomly assigned 
to be either the pipe instructor or the Lego instructor. As tools for 
self instruction, the pipe instructor was supplied with pictures of 
the abstract pipe structure from three diferent angles. They also 
had access to a one-minute video explaining how to connect pipe 

joints, as the proper protocol was not evident from the images. The 
Lego instructor received an image of both the elephant and airplane 
structures. Both images were from the ofcial Lego instructions. 
Once the participants were acclimated to the tools available to them, 
they had 10–15 minutes to learn how to build their assigned task. 
During this time, both participants had unrestricted access to the 
learning materials available to them, as well as the pieces to the 
structures they were assigned to build. Participants entered this 
phase of self-learning under the known pretext that they would 
have to teach their assigned task to the opposite participant. 

Upon completion of self-teaching, participants entered the knowl-
edge exchange phase of the study. Both participants moved to the 
same table and sat directly across from each other. The pipe instruc-
tor then, using the pipe pieces, taught the Lego instructor how to 
build the pipe structure. The learner was instructed not to touch 
the pieces until the completion of frst run-through of the structure. 
After pipe teaching concluded, the Lego instructor taught the other 
participant how to build the two Lego structures under the same 
conditions. Both knowledge exchange interactions were recorded 
from three views: a wide, side view of both of the participants, a 
frontal instructor view, and a frontal learner view (Figure 1). 

Finally, both participants were allotted 10 minutes to demon-
strate their newly acquired knowledge of the opposite participant’s 
task. Both participants returned to their independent stations, and 
the pipe instructor built the two Lego structures while the Lego 
instructor built the pipe structure. During this phase, participants 
were not permitted to ask questions and worked completely from 
memory of the knowledge exchange. The whole study concluded 
after each participant completed this fnal task (or at the conclu-
sion of 10 minutes). Each participant received a $10 Amazon gift 
card as compensation for their time. We then conducted a retro-
spective think aloud with one pair of participants, during which 
they watched their knowledge exchange and provided insight into 
their checking and backchannel behavior. These participants were 
compensated for this portion of the study, as well. 

3.2 Participants 
Twenty-two participants, all fuent English speakers aged 18–25, 
engaged in the hour-long, data collection study. These participants 
were divided into 11 dyads and had limited prior interaction with 
one another. One pair of participants piloted the study with three, 



not two, Lego structures. Another pair did not follow the experi-
mental protocol and jointly built the structures. As a result, nine out 
of the 11 pairs were included in our data coding and behavioral anal-
ysis. Of the participants included in our analysis, ten self-identifed 
as female and eight as male. Twelve participants primarily studied 
or were studying engineering disciplines in college, and all but fve 
participants had prior teaching or tutoring experience. On a scale 
of 1–5, 5 being excellent and 1 being poor, participants rated their 
spatial awareness skills at an average of 3.38 (�� = 0.92). 

3.3 Behavioral Coding 
Our coding focused on three areas: 1) why the instructor checked on 
(gazed toward) the learner, 2) how the learner responded to checking 
cues, and 3) the diferent phases of the instructional process. 

Motivations of Checking. Through in-depth review of Lego and 
Pipe task videos, we identifed three key event types that led to the 
instructor’s checking behaviors: 

• Providing supplemental information. The instructor provides 
information that supplements the demonstration in order 
to help the learner process the demonstration. This type 
was further coded with four categories that include 1) show-
ing action, 2) labeling items, 3) making a reference, and 4) 
providing spatial information. 

• Highlighting task specifcs. The instructor draws the learner’s 
attention to specifc aspects of the demonstration. This event 
type contains three categories: 1) displaying part or all of 
the structure, 2) repeating teaching steps, and 3) providing 
strategic tips. 

• Conversing. The instructor checks on the learner periodically 
as in common natural conversation. 

Teaching Phases. We categorized the instructional process into 
key phases: delivery; review (overview, recap, re-demonstration, 
and strategy); feedback (confrmation, clarifcation, and correction); 
transition (preparation, regroup, and topic change); and other (en-
gaging with the learner verbally or talking to oneself; "Any question 
about this part?", "This is so confusing. I can’t remember the exact 
structure but anyway we’ll go with this."). 

Two people coded the data independently. One coder coded all 
nine videos of the Lego task, while the other coded all nine videos 
of the Pipe task. Both coders completed two videos of each task 
(n=4). Two of the videos were used to establish the coding scheme; 
the other two were used to verify coding reliability. Both coders 
achieved high agreements on motivations of checking (Lego: 92%; 
Pipe: 100%) and on teaching phases (Lego: 88%; Pipe 89%). 

4 BEHAVIORAL ANALYSIS AND FINDINGS 

4.1 Gaze Checking on Learners 
We combined qualitative accounts from the retrospective think 
aloud with quantitative results across all pairs, to better understand 
how instructors use gaze to synchronize their mental model of the 
task with that of the learner. 

4.1.1 For what reasons do instructors check on learners? Instruc-
tors check on learners for a variety of reasons. Table 1 illustrates 
how these motivations varied across teaching phases. Instructors 

checked on learners the most during the delivery and review teach-
ing phases. Additionally, they checked most commonly to supple-
ment and highlight aspects of their teaching. For example, during 
the Lego task, the instructor reported that she would fnd herself 
looking up at the student either "if I did something myself that I 
thought would be confusing to him," or "if I felt like I wasn’t explain-
ing something very well." This provides evidence that instructors’ 
checking behavior mainly served to ensure learners were following 
the integral steps of task. Instructors also checked on learners to 
look for non-verbal cues of understanding. For example, the in-
structor of the Pipe task explained that "I looked over at her a couple 
times to kind of see if it looked like she was confused by anything, but 
she seemed like she had pretty intent focus." This method of checking 
also serves to supplement instructor behavior during delivery and 
review phases of the task, as noted by one instructor who catego-
rized pieces: "if [I] labeled [them], as a certain shape, it would be 
easier for [the learner] to understand". 

Moreover, another common reason for instructors to check on 
learners involved their own predictions of task complexity. For 
example, during the Lego task, the instructor reported that she 
looked up at the learner to ensure he was following along, based on 
her prediction of how complex the step was. She explained that "I 
knew that if I was in his position, I’d need to see it [the task] another 
time." Instructors also often referred to their own understanding 
of the task as a guide for when they should check on the learners. 
The Lego task instructor explained, "I remember I personally had a 
really hard time even fguring out from the picture how to build this 
... so [I was] just making sure I was doing a decent job teaching him." 

Table 1: Distribution of gaze counts by checking motivations 
in diferent teaching phases. 
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4.1.2 How ofen do instructors check on learners? On average, in-
structors checked on the learner 4.14 times per minute with a 
standard deviation of 3.96 (Pipe task: � = 4.00, �� = 3.98; Lego 
task: � = 3.87, �� = 3.86). The average interval between the in-
structors’ gaze cues was 13.19 seconds with a standard deviation 
of 25.63 seconds (Pipe task: � = 13.02�, �� = 27.81�; Lego task: 
� = 13.36�, �� = 23.06�). 

4.1.3 Duration of gaze cues. We explored whether gaze duration
can be used to diferentiate motivations of checking and teach-
ing phases. To this end, we ran a two-way ANOVA, where check-
ing motivation and teaching phase were set as two independent 
variables, and gaze duration was set as a dependent variable. Our 
analysis did not reveal any signifcant main efect of checking moti-
vations (� (2, 662) = 0.12, � = .891) and teaching phases (� (4, 662) = 
2.22, � = .066) on gaze duration, nor did we see signifcant interac-
tion efect (� (8, 662) = 0.67, � = .715). Table 2 presents the data of 
gaze length, indicating that gaze duration was comparable under 
diferent reasons for checking and that teaching phases generally 
have more infuence on gaze duration. The infuence of teaching 

 



phase on gaze duration may stem from the discrete mapping be-
tween assumptions about the learner’s mental model and each 
phase. For example, gaze during delivery was on average shortest 
in duration, whereas it was longest during feedback. As the default 
mode, delivery assumes that the learner builds a mental model equal 
to that of the instructor. However, feedback aims to reshape the 
learner’s mental model of the task, and may therefore require more 
prominent grounding behaviors. 

Table 2: Gaze duration breakdown by motivations of check-
ing and teaching phases 

Supplement
Highlight
Converse

Motivation
of checking

Teaching
phases

M=813.96
M=844.06
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Delivery
Review
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M=1309.25
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M=993.17
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SD=575.25
SD=611.54
SD=858.46
SD=641.71

SD=507.12
SD=549.71
SD=715.41

Gaze duration (ms) Gaze duration (ms)

4.2 Behavioral Responses to Gaze Checking 
In addition to understanding the instructor’s checking behavior, we 
examined the learner’s responses to checking during mental syn-
chronization. We considered the learner’s behavior as a response 
to the instructor’s checking cues if the behavior happened between 
�����−����� and �����−��� + 1s. We note that the learner may ex-
hibit responses through more than one behavioral channel. 

4.2.1 How do learners respond to checking behavior? Verbal and 
nodding backchannel responses to checking cues were most com-
mon amongst learners. Moreover, the frequency of these responses 
relative to gaze and lean was more pronounced when learners 
responded to supplemental or highlighting gazes versus conver-
sational gazes (Figure 3). This data mirrors observations from the 
study, during which learners directed their gaze primarily at the 
task work space instead of the instructor. Additionally, we found 
that 40.4% of the learners’ responses were exhibited in multiple 
channels while learning the Lego task, whereas only 26.4% were 
observed while learning the Pipe task. 
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Figure 3: Student responses to diferent gaze motivations. 

4.2.2 How long do learners take to respond to checking behavior? 
We defned response time as the time between the beginning of a 
checking behavior and the beginning of its corresponding learner re-
sponse. If there were multiple responses with respect to a checking 
behavior, we counted the frst response. On average across the two 
tasks, the response time was 707.08 milliseconds; the Lego and Pipe 
tasks had similar response times (Lego task: � = 709.34��, �� = 
536.28��; Pipe task: � = 704.69��, �� = 554.09��). 

4.2.3 How ofen do learners respond to checking behavior? We 
counted the number of times the learner responded to a check-
ing behavior and divided it by the number of checking behaviors. 
The overall response rate was 70.17% (Lego task: 75.62%; Pipe task: 
64.72%). We speculate that because the Pipe task was structurally 
abstract and complex, it required more intense focus on the demon-
stration from the learner. This limited their processing bandwidth 
for responses. The need for intense focus may have also limited 
opportunity for multimodal responses to checking cues in the Pipe 
task (Sec. 4.2.1). 

5 DISCUSSION 
Implications for Robot Teaching. It is imperative that instruc-
tors check on learners periodically to ensure they follow the instruc-
tion. Our fndings ofer design parameters for enabling efective 
robot teaching. For example, robot instructors may check on hu-
man learners approximately four times per minute. However, it 
is important to note that this frequency must be adaptive to in-
structional context, rather than following a static, fxed timeline. 
Our study reveals that instructors checked on learners more fre-
quently during teaching phases delivery and review, in which the 
instructors and learners sought to achieve mutual understanding. 
Moreover, robot instructors should also regularly check on human 
learners when highlighting and supplementing task instructions. For 
instance, robots should check whether learners attend to referenced 
aspects of the task through either verbal or gestural indications; 
this process parallels that of initiating joint attention [10]. 

Implications for Robot Learning. As learners, robots can 
leverage human instructors’ gaze checking behaviors to infer which 
parts of the task demonstration are critical, interject questions, and 
request additional demonstrations. Furthermore, robot learners 
should provide appropriate backchannel signals to facilitate human 
teaching [13, 18]. Our fndings suggest that nods and brief verbal 
responses are suitable for learning scenarios that involve intense 
focus on shared context. While backchanneling is instrumental, 
robot learners need not always respond to checking cues, which 
otherwise could be perceived as robotic and unnatural. In fact, a 
robot learner may deliberately show fewer backchannel signals to 
prompt a human teacher to slow down and repeat their instruction. 
Lastly, it is important to provide backchannel signals in a timely 
manner. Our results show that people tend to respond within one 
second. Responses that occur more than one second later may be 
regarded as a lack of response or as awkward [17]. 

Limitations and Future Work. Prior research has shown how 
people display social cues towards robots, even if they do not exhibit 
anthropomorphic features (e.g., [19]), and how human-inspired 
robot behavioral cues can facilitate human-robot interactions (e.g., 
[9]). However, whether people would exhibit behavioral cues and 
interaction patterns, as identifed in this study, when teaching or 
learning a task from a robot requires further investigation. Future 
research should also examine how our fndings may generalize to 
diferent manipulation tasks and real-world settings. Lastly, while 
we recognize that our exploration only involved a small sample 
size, we hope our fndings can serve as an initial foundation for 
future work to develop computational models to enable robots to 
learn from and teach people efectively. 
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