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Abstract— Mobile robots capable of navigating seamlessly
and safely in pedestrian rich environments promise to bring
robotic assistance closer to our daily lives. In this paper we draw
on insights of how humans move in crowded spaces to explore
how to recognize pedestrian navigation intent, how to predict
pedestrian motion and how a robot may adapt its navigation
policy dynamically when facing unexpected human movements.
Our approach is to develop algorithms that replicate this be-
havior. We experimentally demonstrate the effectiveness of our
prediction algorithm using real-world pedestrian datasets and
achieve comparable or better prediction accuracy compared
to several state-of-the-art approaches. Moreover, we show that
confidence of pedestrian prediction can be used to adjust
the risk of a navigation policy adaptively to afford the most
comfortable level as measured by the frequency of personal
space violation in comparison with baselines. Furthermore, our
adaptive navigation policy is able to reduce the number of
collisions by 43% in the presence of novel pedestrian motion
not seen during training.

I. INTRODUCTION

As we continue to develop mobile robots to support
various human activities ranging from security surveillance
to warehouse automation, it is critical for these robots to
move efficiently and safely around humans. To successfully
integrate these robots into human environments, we built on
prior research exploring robot navigation in human crowds
(e.g., [1]) and drew insights from seamless human navigation
through crowded spaces. One way that people accomplish
seamless navigation is by anticipating other pedestrians’
future movements and adjusting their own behaviors accord-
ingly; for example, people slow down or change directions to
avoid collisions [2]. In this work, we seek to computationally
realize and evaluate human-inspired movement anticipation
and how such anticipation may enhance the quality of robot
navigation in terms of success rate and pedestrian comfort.

Specifically, this work makes the following contributions:
(1) a novel approach to pedestrian prediction that combines
generative adversarial networks with a probabilistic model of
intent that achieves performance which matches or exceeds
state-of-the-art baseline algorithms on real world datasets,
(2) the ability to use errors in predicted pedestrian motion to
detect novel pedestrian behaviors not seen during training,
(3) an adaptive policy that adjusts the risk of the robot
controller based on detecting novel pedestrian behaviors to
minimize collisions.

The remainder of this paper is organized as follows. In
Sec. we provide a brief overview of existing work on
robot navigation in human crowds. In Sec. we describe
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Fig. 1: Adaptive crowd navigation policy that uses pedestrian
intent and prediction error to adjust the risk profile of a
control policy.

a novel approach to longer term pedestrian prediction that
probabilistically reasons about the pedestrian’s intent. In
Sec. we compare our prediction results using real world
datasets and show comparable or better performance than
state-of-the-art baselines. In Sec. [Vl we describe how mea-
suring uncertainty in pedestrian prediction can be used to
capture novel pedestrian motion not seen during training.
This awareness allows us to adjust the risk of a learned
navigation policy resulting in 43% less collisions in the
presence of novel pedestrian motion.

II. RELATED WORK
Crowd Navigation

Previous studies have investigated approaches that enable
mobile robot navigation in crowded environments (e.g., [1]).
This body of work can be classified into three broad areas:
(1) algorithms that react to moving obstacles in real time, (2)
trajectory based approaches that plan paths by anticipating
future motion of obstacles, and (3) reinforcement learning
based approaches that learn a policy to navigate in crowded
environments. Reaction based methods include works such
as reciprocal velocity obstacles (RVO) [3] and optimal re-
ciprocal collision avoidance (ORCA) [4]. Trajectory based
approaches, such as [5], [6], explicitly propagate estimates of
future motion over time and perform trajectory optimization
on those future states for collision avoidance. Additionally,
several recent works use variations of reinforcement learning
to learn policies capable of crowd navigation (e.g., [7], [8],
[9]). Everett et al. [8] developed a decentralized approach
to multiagent collision avoidance using a value network that
estimates the time to goal for a given state transition. Chen
et al. [9] further extended this work by adding an attention
mechanism and a novel pooling method to handle a variable
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Fig. 2: Our pedestrian prediction network architecture. The generator network consists of a recurrent encoder network, a
variational autoencoder, an intent prediction module and recurrent decoder network. The discriminator network consists of
a recurrent encoder network to distinguish between real and fake trajectories.

number of humans in the scene. Kahn et al. [10] investigates
adaptive navigation polices based on uncertainty; however,
they only considered environment uncertainty with static
obstacles and not navigation in the presence of pedestrians.

Pedestrian Prediction

Several studies have investigated pedestrian prediction for
a variety of applications including robotics, autonomous driv-
ing, and video surveillance. Many approaches treat pedes-
trian prediction as a state estimation problem by relying on
a kinematic model and using concepts from Bayesian and
Kalman Filtering [11], [12], [13], [14]. Many other works
have investigated intent or goal based estimation as part of
trajectory planning (e.g., [15], [16], [17]). Recent works have
investigated deep neural networks that consider agent-to-
agent and agent-to-environment interactions (e.g., [18], [19],
[20], [2]). This brief summary only highlights a small snap-
shot of the many relevant works related to pedestrian motion
prediction. For a more comprehensive overview, Rudenko et
al. provide a survey describing various approaches to the
human motion trajectory prediction problem [21].

While each of these papers makes significant contributions
to their respective fields, none of the prior work, as far as
we are aware, focuses on pedestrian prediction as a measure
of uncertainty to inform adaptive crowd navigation policies.

III. PEDESTRIAN PREDICTION

Our objective is to estimate future pedestrian trajectory
given an observation history of past trajectories. Formally,
at given time t, we represent the state of the pedestrian,
i as: X! = (al,y!). We observe pedestrian state during a
time window ¢ = 1 to t = T, represented as Xi"bS =
[(z},yl), ..., (zlr= yTr<)]. The objective is to predict the
pedestrian state from time ¢ = Tops41 to t = Tppeq repre-
pred _ [(ITOZ}S-H yTObs+1)7 - (SC yrpred)].
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Neural Network Architecture

Our network architecture described in Fig. consists
of a generator and a discriminator network. The generator

network includes a recurrent encoder network, a variational
autoencoder, a recurrent decoder network, and an intent
predictor. The discriminator network classifies samples as
either real trajectories or not socially acceptable[18].

Encoder Network

The recurrent encoder network consists of a linear spatial
embedding layer with a ReLU activation layer, a(+), followed
by an LSTM layer, where W, and Wi, are weights of the
embedding layer and LSTM, respectively.

hi = O‘(va We)
pi = LSTM(p; ™", iy Wistme)

We then use two fully connected linear layers (MLPs) to
produce latent distribution parameters p and o, and sample
from this distribution represented as 2,4, to generate sample
diversity, where W, W,,b,, and b, are the weights and
biases of the fully connected layers, respectively.

pi =

log(exp(Wopt + by) + 1)
zwael = pt + ol - e;e ~ N(0,1)

WMPE + by

t
5

Intent Recognition

In this section, we describe our probabilistical model of
intent recognition and how navigation intent can be combined
with latent embeddings from the recurrent encoder network
to improve longer term prediction of pedestrian trajectory.

Inspired by [22], we use a Bayesian approach to estimate
the probability of a desired goal, ¢!, of the pedestrian i
based on a past observation history, X?** spanning ¢t = 1
to t = T,ps, as described by Equation [1} P(gf|X¢%) is the
posterior probability of each goal, g given an observation
history X fbs. P(g!) is the prior probability of a pedestrian
choosing a given goal at time t. P(X?%%|g?) is the likelihood
probability of observing X% given g! and modelled as a
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Fig. 3: Estimating probability distribution of the pedestrian’s intent from the start, middle and end of the trajectories. Here
we demonstrate the intent uncertainty decreases as the pedestrian reaches the target.

Gibbs measure described by Equation Here, E (X% |gt) is
an energy function that we set equal to distance between the
observed trajectory and the shortest trajectory to the goal. 3
is a hyperparameter that adjusts the landscape of the resulting
probability distribution and Z(/) is a normalizing constant.

P(gh)P(X?"|g})

P(gﬂXzObS) = P(ngs)

o Pgi) P(X7"|gf) (1)

P(X"|gf) = exp(—BE(X{*|gf)) 2)

1
Z(B)

In our work, we assume P(g!) is a uniform distribution
and we set S to 0.5. We explored two ways to represent a
discrete set of goals: (1) inferring the goals directly from the
data and (2) generating a uniform set of goals in a grid-like
pattern. We decided on using a grid-like representation of
goals as it affords greater generalization to diverse scenarios.
In this work, we generated a uniform 4 x 4 grid of targets
to illustrate our approach. Figs. and [3¢| show the
distribution landscape across the goals based on the observed
trajectory in red. Green trajectories represent ideal paths to
each of the targets with the opacity equal to the resulting
probability P(g!|X¢*%). As shown in Fig. 3, there initially
is significant uncertainty regarding the end goal of the
pedestrian; however, as the pedestrian navigates closer to the
target, the uncertainty decreases towards a specific goal.

The resulting 16 dimensional probability distribution is
concatenated to the z! feature vector sampled from the VAE
prior to the decoder network of the generator.

2! = [z-vael, P(g!| X¢")

1: =
Decoder Network

The goal of the decoder network is to use the latent
embedding from the encoder network combined with the in-
tent distribution to generate prediction samples. The decoder
network used is similar to that in [18] and consists of linear
and recurrent layers used to generate pedestrian predictions.
The hidden state of the LSTM decoder, pf is initialized to
zf Here Wy, Wistma and W, are weights, and ¢ is a fully
connected layer.

dht = (X1, W)
pt = LSTMy(p: ™, dhl, Wistma)
Xf - Qb(pfa WO)

Loss Functions

During training, we use a combination of the mean squared
error (MSE) between the ground truth trajectory and the pre-
dicted trajectory, adversarial loss, as well as KL-divergence
loss from a unit Gaussian distribution for the variational
autoencoder as our loss function. Similar to [18], we also
experiment with variety loss during training where for each
scene we generate k possible outputs and choose the lowest
MSE to generate diversity in the samples.

IV. PEDESTRIAN PREDICTION EXPERIMENTS

We performed a series of experiments with real world
datasets and compared our performance with several state-
of-the-art baseline algorithms. In particular, we used two
widely used, publicly available repositories—ETH [23] and
UCY [24]——consisting of 5 unique datasets (ETH, Hotel,
Univ, Zaral, and Zara2) with 4 scenes. The datasets include
pedestrian motion with a top down view and annotated
pedestrian positions with respect to the world frame.

Training Details

The dimension of the hidden state for the encoder, p is
16. The dimension of the decoder network’s hidden state, z
is 32 including the 16 dimensions representing probability
of navigation intent. We trained for 200 epochs with a
batch size of 64 using the Adam optimizer with the initial
generator network learning rate set to 0.0001 and the initial
discriminator network learning rate set to 0.001.

Baseline Implementations

We compare our algorithm to several baselines represent-
ing unique solutions to the pedestrian prediction problem.
These baselines include a linear regression algorithm (Lin-
ear) that minimizes least square error to estimate parameters
of a linear model, a simple LSTM model, (S-LSTM) which



is an LSTM model with a social pooling layer [25], Social
GAN (SGAN) which uses a GAN in combination with an S-
LSTM [18], and finally SoPhie which uses scene contextual
information to make predictions [19].

Metrics

Similar to [18], [19], [26], we use the average dis-
placement error (ADE) and final displacement error (FDE)
metrics to compare our approach to existing baselines. The
ADE (in meters) is the L2 distance between the ground
truth and predicted pedestrian trajectories for each trajectory
point. The FDE (in meters) is the final displacement distance
between the last point in the predicted trajectory and the
ground truth. We use a leave-one-out approach where we
train on 4 of the datasets and test on one.

Prediction Results

Table [Il summarizes the ADE and the FDE for the 5
datasets described above when observing 8 timesteps (3.2
sec) and predicting 12 timesteps (4.8 sec) into the future. We
use similar notation from [18], kV(+IR)-N, where k repre-
sents the samples for variety loss, IV represents the number
of samples taken during test time and +IR represents whether
intent recognition is used as part of the prediction. Sample
diversity in this sense [18] allows the learning algorithm to
produce k predictions and choose the prediction with the
smallest MSE to encourage diversity. We compare our results
with and without sample diversity (where £k = N = 1).
Our approach results in better than or equal ADE and FDE
when compared to the baselines for 8 out of 10 experiments
without sample diversity and 7 out of the 10 experiments
with sample diversity. In addition, our approach achieves
best performance when averaging across the 5 datasets for
both the ADE and FDE. These results demonstrate the
advantages of estimating a probabilistic interpretation of
intent and explicitly using this estimate when making longer
term predictions of pedestrian trajectories.

V. ADAPTIVE CROWD NAVIGATION

We now extend our pedestrian prediction algorithm to
enable adaptive crowd navigation policies for mobile robots.
We conjecture that errors in pedestrian prediction can serve
as a measure of policy uncertainty. Specifically, as we
encounter distribution shift of pedestrian motion, the error
in pedestrian prediction can serve as an effective method to
detect novel pedestrian motions not seen during training. We
believe that detecting novel pedestrian motion profiles is a
cue to switch to a risk averse control policy and by doing so
will result in fewer collisions.

In our development of adaptive navigation, we leverage
the CrowdSim simulation environment provided by [9]. This
environment provides the ability to model pedestrian motion
using an optimal reciprocal collision avoidance (ORCA)
model [4]. Pedestrian behavior can be modelled using pa-
rameters such as preferred velocity, the maximum distance
and time to take into account neighboring agent behavior,
pedestrian’s radius, and maximum velocity. In addition,

CrowdSim provides an OpenAl Gym like environment [27]
to experiment with reinforcement learning based policies
controlling a robot’s actions to reach a target goal while
avoiding obstacles.

The state space of the environment follows that of [28],
[9] and consists of the following parameters with respect
to the robot position as the origin and the x-axis pointing
towards the goal: distance from robot position to goal,
robot’s preferred velocity, actual velocity and radius. For
each pedestrian, the state includes position, velocity, radius,
and distance between pedestrian and robot.

The action space assumes a nonholonomic unicycle kine-
matic model for the robot agent and consists of 3 discrete
speeds and 6 discrete rotation angles for a total of 18 actions.

In order to learn a policy that allows the robot to success-
fully reach the target while avoiding collisions with other
pedestrians, we use the same reward definition as [8], [9]:

—0.25 it dpyin <0

R(s,a) = —0.1 —dpin/2 elseif dpin < 0.2
1 else if robot reached goal
0 0.W.

where d,;, is the minimum distance separating the robot
and the humans during the previous timestep.

We train two navigation policies, a risk averse and an ag-
gressive policy. The aggressive policy consists of a preferred
velocity of 2.0 m/s, and the risk averse policy is limited to
1.0 m/s [} We first assess state-of-the-art crowd navigation
policies’ performance in the presence of a changing distribu-
tion of pedestrian motion. We trained both CADRL [28] and
SARL [9] with preferred robot velocities set to 2.0 m/s with
a static pedestrian motion model. The starting and ending
positions of the pedestrians were sampled uniformly inside
a square of width 10 meters. The policies were pretrained
using imitation learning using ORCA similar to [9] and
were subsequently trained using a value iteration network
for 10000 steps. We then evaluated the performance of these
policies on test data with a shifted distribution of pedestrian
motion uniformly sampled from the parameters described in
Table|[l] The objective for this test is to show the limitation in
prior works’ ability to handle distribution shifts from unseen
pedestrian motion during training.

We then conducted a series of experiments with an adap-
tive control policy using various methods of novelty detection
of new pedestrian behaviors.

We first evaluate with a traditional, non-deep learning
based approach using a one-class SVM with a radial basis
kernel [29]. We train the one-class SVM algorithm based on
the fixed pedestrian motion profile and evaluate its ability
to detect novel distributions of pedestrian motion data. We
then conduct several experiments using deep learning based
approaches for novelty detection including Social GAN and

IFor the risk averse policy, we first considered training a policy where
the penalty for collision was significantly increased, however, changing the
reward function would make comparisons with existing work difficult.



Metric Dataset | Linear | LSTM | S-LSTM | Sophie SGAN Ours
1V-20 | 1V-1 | 1V-20 | 20V-20 | 20VP-20 || 1V-1 | IV+IR-1 | 1V+IR-20 | 20V+IR-20
ETH [ 133 [ 1.09 [ 1.09 [ 070 [113] 1.03 [ 081 [ 087 [096] 085 0.77 0.69
HOTEL | 039 | 086 | 079 | 076 |101| 090 | 0.72 | 067 | 060 048 0.42 0.39
ADE UNIV | 082 | 061 | 067 | 054 [0.60| 058 | 060 | 076 [l 0.55| 0.53 0.51 0.56
ZARAL | 062 | 041 | 047 | 030 |042| 038 | 034 | 035 | 045| 041 0.36 0.35
ZARA2 | 077 | 052 | 056 | 038 |0.52] 047 | 042 | 042 [ 038| 033 0.30 031
AVG | 079 | 070 | 072 | 054 [074] 067 | 058 | 061 [[059] 052 047 0.46
ETH [ 294 | 241 [ 235 143 [221] 202 [ 152 [ 162 [[185] 180 1.66 1.42
HOTEL | 0.72 | 191 176 | 1.67 |218| 1.97 | 1.6l 137 || 1L18| 1.04 0.94 0.79
FDE UNIV | 159 | 131 140 | 124 |128| 122 | 126 | 152 |[117| 113 1.09 1.17
ZARA1| 121 | 088 | 1.00 | 0.63 |091| 084 | 069 | 068 | 094| 087 0.79 0.74
ZARA2 | 148 | 111 117 | 078 |111] 1.01 | 084 | 084 || 079| 072 0.65 0.66
AVG | 159 | 152 | 154 [ 115 [154] 141 [ 118 [ 121 [[119] L1 1.03 0.96

TABLE I: Average Displacement Error (ADE) and Final Displacement Error (FDE) in meters for ¢,,.q = 12 timesteps.
Our method matches or outperforms state-of-the-art and baseline methods by explicitly estimating intent as a probability

distribution of possible goals (lower is better).

our intent-aware pedestrian prediction algorithm. Our goal is
to demonstrate the benefits that a higher performing pedes-
trian prediction algorithm can have on reducing collisions in
an adaptive crowd navigation policy.

We trained both Social GAN and our prediction algorithm
with the same fixed pedestrian motion profile that we trained
the original policies. We then tested pedestrian prediction
with a changing distribution of pedestrian motion while
allowing the robot to navigate. We compute an estimate of
novelty by thresholding the prediction error, as measured
using the FDE, by a value «. If the error exceeds «, the
policy moves from an aggressive behavior to a risk averse
policy with the goal of avoiding collisions. The value of «
was chosen by computing the mean and standard deviation
of the FDE in the training set. In our experiments, « was set
to 3 standard deviations from the mean to eliminate outliers.

TABLE II: ORCA Model Parameters

Parameters Name | Min Value [ Max Value |

Preferred Velocity 0.5 2.0
Radius 0.2 0.8
Neighbor Distance 2.0 20.0
Time Horizon 0.1 5.0

A. Quantitative Analysis

The primary metrics we used for comparison are the
number of successful trials, number of collisions, the average
navigation time, the discomfort level, and the average reward.
The discomfort level is defined as the frequency of the
separating distance being less than the desired separation
distance, in this case 0.2 m. The results after running 500 test
cases are reported in Table We compare various methods
of crowd navigation denoted by method — p where p is
the number of pedestrians in the scene and A indicates an
adaptive policy. In these experiments, the starting and goal
positions, and pedestrian motion profiles are all randomly
initialized for each of the 500 test cases; however, these
parameters are consistent across the various methods to
create a fair comparison.

The first two rows show the performance of CADRL and
SARL policies where we train and test without changing
the distribution of the pedestrian motion profile. We then
evaluate the algorithms’ ability to avoid collisions when
faced with novel pedestrian motion and show that both
the CADRL and SARL policies have a significantly higher
collision and discomfort rates. The number of collisions for
CADRL and SARL increase by 35 and 65, respectively.

The non-deep learning based approach detects novel
pedestrian motion using a one-class SVM and reduces the
number of collisions by 2 compared to the non-adaptive
SARL algorithm.

Using Social GAN as the pedestrian prediction algorithm
for novelty detection had a significant improvement com-
pared to the one-class SVM by further reducing the number
of collisions by 20.

Our intent-aware pedestrian prediction algorithm for nov-
elty detection resulted in best performance across almost all
of the metrics. Using our approach, we were able to further
reduce the number of collisions by 5 compared to Social
GAN and overall by 30 compared to the non-adaptive SARL
policy. We do this while also demonstrating best performance
in overall discomfort rate and overall reward. Further, we
show that the benefits of our approach scale as the number
of pedestrians in the scene increase.

B. Qualitative Analysis

We further study the qualitative aspects of our approach. In
Fig we show an example where our pedestrian prediction
algorithm has low FDE hence has high confidence and
correctly decides to maintain a high risk, fast navigation
policy. Conversely, in Fig.[4b| we show an example where the
FDE in pedestrian motion is high. This situation is flagged
as a novel pedestrian behavior and in this example, a risk
averse policy is selected resulting in an avoided collision.

In Fig[ddand Fig.[4d] we also show example trajectories of
the adaptive and non-adaptive policies. In Fig with the
non-adaptive policy, even though the pedestrian prediction
error is high, the default aggressive policy continues and
the robot eventually collides with a pedestrian within 3
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Fig. 4: This figure provides representative examples of pedestrian predictions with low and high uncertainty as well as the
trajectories of the robot and pedestrians navigating to their desired goals.

seconds. In contrast, using our adaptive policy as shown
in Fig. we detect novel pedestrian behavior and instead
modify the policy to a risk averse controller. This adaptation
causes the robot to reduce its velocity in real time preventing
a near collision from occurring. Videos of this behavior
and additional examples can be found in the supplemental
material of this paper.

TABLE III: Quantitative Analysis of Collision Avoidance

Dist. Time | Nav. | Disc. Avg.

Method | g0 | Suce.] Coll | (| Time | Rate | Rwd.
CADRLS | N | 455 | 45 | 0 | 448 | 202 | 0340
SARL5 | N | 490 | 5 5[ 461 | 099 | 0389
CADRLS | Y | 420 | 80 | 0 | 452 | 353 | 029%
SARLS | Y | 425 | 70 | 5 | 462 | 227 | 0303
SVM-AS | Y | 426 | 68 | 6 | 534 | 214 | 0.331
SGAN-AS | Y | 445 | 45 | 10 | 631 | 205 | 0.38
OusA5 | Y | 450 | 40 | 10 | 674 | 1.98 | 0.409
SARL.10 | Y | 388 | 99 | 13 | 521 | 262 | 0234
OursA-10 | Y | 444 | 54 | 2 | 849 | 2.18 | 0.330
SARL.I5 | Y | 290 | 205 | 5 | 530 | 480 | 0.115
OursA-15 | Y | 366 | 132 | 2 | 869 | 420 | 0212
SARL20 | Y | 172 | 324 | & | 527 | 670 | 0017
OursA20 | Y | 262 | 237 | 1 | 865 | 629 | 0.066

VI. DISCUSSION

To enhance robot navigation in human crowds, in this
paper we propose techniques that can estimate pedestrian
motion and use this motion to enable adaptive policies based
on detecting pedestrian movement profiles not present during
training. When unexpected pedestrian motions are observed,
we modify the policy to a low risk controller with the goal
of avoiding collisions. In particular, we present empirical
evidence (Table [I) showing the importance of having an
explicit, probabilistic representation of the intent in longer
term prediction. Our pedestrian prediction method performs
comparably, if not better, when compared to several state-of-
the-art baselines using standard real world datasets. More-
over, while showing how several crowd navigation methods
fail to avoid collisions in the presence of novel pedestrian

motion not seen during training, our approach demonstrated
the best results in terms of most number of successful trials,
highest overall reward, lowest number of collisions, and
lowest overall discomfort rate.

Our approach is not without limitations. First, our av-
erage navigation time did increase compared to the other
approaches, although this increase was expected as the
reported times excluded test cases where a collision occurred.
Moreover, our approach avoided collisions by reducing the
speed of the robot which resulted in an expected increase in
average navigation time. Second, while our approach reduced
the number of collisions, it did not prevent them entirely.
There were instances when even though our prediction
was accurate, a collision could still occur, suggesting that
pedestrian prediction alone does not capture all aspects of
uncertainty involved in dynamic crowd navigation. In these
scenarios, it may be beneficial to consider other forms of
uncertainty estimation such as bootstrapping [30], stochas-
tic dropout [31], [32], and multiple hypothesis loss tech-
niques [33], [34]. Third, this work only focused on modeling
pedestrians’ navigation intent to enhance the quality of robot
navigation. Future work should consider other aspects of
pedestrian navigation, such as personality [35] and group
interaction, to capture nuances in human navigation. Finally,
while detecting novel states is a step forward, our goal,
ultimately is to develop continual learning approaches that
learn in real time from experiences. We leave this for future
work as well.

In spite of these limitations, we believe explicitly mod-
elling a probabilistic interpretation of intent has shown to
improve accuracy of estimating future pedestrian motion.
Further, the use of pedestrian prediction has the ability to
detect novel pedestrian behaviors not seen while learning
a policy. Finally, we show that detecting novel pedestrian
behaviors and adapting the policy can significantly reduce
the number of collisions compared to alternative approaches.
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