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Figure 1: PATI supports the augmented and situated specification of robot tasks, allowing users to teach their robots new
tasks by directly referencing and interacting with the environment through tools (e.g., shape tools) and common touch screen
gestures, such as pinch, tap, or drag-and-drop. (1)-(8) show the process of specifying a pick-and-place task, and (9)-(12) show

the robot performing the programmed task.
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ABSTRACT

As robots begin to provide daily assistance to individuals in
human environments, their end-users, who do not necessar-
ily have substantial technical training or backgrounds in ro-
botics or programming, will ultimately need to program and
“re-task” their robots to perform a variety of custom tasks. In
this work, we present PATI—a Projection-based Augmented
Table-top Interface for robot programming—through which
users are able to use simple, common gestures (e.g., pinch
gestures) and tools (e.g., shape tools) to specify table-top ma-
nipulation tasks (e.g., pick-and-place) for a robot manipulator.
PATI allows users to interact with the environment directly
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when providing task specifications; for example, users can
utilize gestures and tools to annotate the environment with
task-relevant information, such as specifying target land-
marks and selecting objects of interest. We conducted a user
study to compare PATI with a state-of-the-art, standard in-
dustrial method for end-user robot programming. Our results
show that participants needed significantly less training time
before they felt confident in using our system than they did
for the industrial method. Moreover, participants were able
to program a robot manipulator to complete a pick-and-place
task significantly faster with PATI. This work indicates a new
direction for end-user robot programming.
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1 INTRODUCTION

Robots have the potential to augment human abilities in a
variety of domains, including flexible manufacturing, healthy
aging, and collaborative construction. These domains neces-
sitate that robots provide custom assistance to accommo-
date individual needs, environmental constraints, and task
requirements. One way to enable robots to achieve such cus-
tomization is to allow end-users to program and re-skill their
robots according to the needs, constraints, and requirements
presented in their own specific contexts. However, robot
programming is difficult; it requires substantial technical
training, knowledge in robotics and relevant engineering
areas, and years of experience in order to become truly com-
petent. To render robot programming more accessible to
people lacking technical training or knowledge, we present a
Projection-based Augmented Table-top Interface (PATTI) for
robot programming. PATI is designed to let people use com-
mon gestures and tools to teach their robots new tasks with

I This project is available at https://github.com/intuitivecomputing/PATL
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direct reference to and interactions with the environment in
an augmented, situated manner (Figure 1).

Research in Programming by Demonstration (PbD) [4, 6, 8]
has explored methods and interfaces for end-users to “pro-
gram” new tasks for their robots through physical demon-
strations, and seeks to generalize the learned skills for use in
potential, unexplored scenarios. This body of research has
investigated how people may train robot learners through
kinesthetic demonstrations [1, 16], natural instructions with
verbal and non-verbal behaviors [23, 24, 26, 33, 34], visual
programming [2, 13, 18, 28], and teleoperative demonstra-
tions in virtual reality [41]. However, common PbD methods
involve little perception of the environment and rely on re-
playing demonstrated action trajectories or tracing recorded
key waypoints (e.g., [1]).

While limited perception constrains the generalizability
and scalability of PbD, perceiving task-relevant objects and
the environment usually requires specialized processes for
training objects for visual recognition and robot manipula-
tion (e.g., [18, 28]), which consequently creates additional
technical barriers for end-users. Moreover, referencing ob-
jects in the environment for robot manipulation is challeng-
ing due to the high variance in references, constrained per-
ception, and different perspectives involved. Although prior
research has explored methods for object referencing for
robot manipulation [10, 27, 32, 35, 40], we still lack a simple,
flexible—yet reliable—method for object referencing, which
is essential for robots working alongside end-users.

In this paper, we seek to streamline the processes of vi-
sual tracking, object referencing, and task specification by
enabling users to reference and annotate the environment di-
rectly through gestural input. To this end, we developed PATI,
an experimental system designed to explore the possibilities
and limitations of illustration-based robot programming. The
design and development of PATI are motivated by prior re-
search in end-user robot programming and projection-based
interaction. In the next section, we review and discuss rele-
vant prior work. We then present the concept of illustration-
based robot programming and our implementation of the
PATI system in Section 3. Section 4 describes a user study
that evaluates the effectiveness of PATI and compares it with
a state-of-the-art system of robot programming by demon-
stration. We report our results of this evaluation in Section 5,
and conclude this paper with a discussion on the applications
and limitations of PATI in Section 6.

2 BACKGROUND
End-User Robot Programming

The utility of a robot depends predominantly on its pro-
grammability [25]. To enable robotic aid in automation pro-
cesses, daily human activities, and more, robotics research
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has explored various methods, tools, and interfaces for ef-
fective robot programming, all of which seek to teach and
adapt robot skills to a variety of task configurations [5]. For
example, the Robot Operating System (ROS) [29] has become
a common programming framework for robotics research
and industrial products. While offering a general framework
for implementing algorithms and systems of sensing, plan-
ning, and decision-making, it requires significant training
and experience before one can use it to competently pro-
gram robot tasks. Moreover, it requires developers to have a
wide span of knowledge—including mechanical engineering,
control theory, and computer vision—in order to program
robots to interact with people, objects, and the environment.
Such technical barriers prevent laypeople from using robots
in custom contexts and limit the possible benefits that robots
are able to provide.

Programming by Demonstration (PbD) [4, 6, 8] is a ro-
bot programming paradigm that aims to lower such barriers
by allowing end-users to program robots through action
demonstration. Visual programming interfaces provide al-
ternative methods of robot programming and seek to em-
power users with diverse backgrounds and levels of expertise
(e.g., [2, 13, 18, 28]). While PbD is useful for specifying ac-
tion configurations and trajectories relevant to task goals,
visual programming abstracts low-level programming and
allows users to focus on high-level task planning. A hybrid
use of PbD and visual programming combines motion-level
preciseness and task-level logics, and has become a common
practice of robot programming in both industry (e.g., Uni-
versal Robots) and academia (e.g., [18, 28]). However, this
hybrid approach still lacks intuitive methods for referenc-
ing the objects and parts of the environment necessary for
manipulation tasks—even those as simple as pick-and-place.

This paper aims to address these limitations by introducing
a new method of robot programming, with which end-users
will be able to specify robot tasks in situ through direct inter-
action with objects and the environment. The most relevant
prior work is perhaps the framework of situated tangible
robot programming [32]. This framework allows users to use
tangible blocks to specify task-relevant objects and provide
annotation in the environment. However, tangible program-
ming does not support 3D specification (e.g., labeling the
height of an object), and its expressiveness is limited by the
number of blocks used. The work in this paper intends to
explore an alternative method of situated programming en-
abled by projection-based augmentation.

Projection-Based Interactive Systems

In the domain of human-computer interaction, projection-
based interfaces have been explored and used for ubiquitous
access to and direct manipulation of information (e.g., [14,
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20, 36, 37]). This type of interface requires minimal mod-
ification of the environment and allows users to interact
directly with the existing environment. For example, ev-
eryday surfaces, such as the seat of a sofa or the surface
of a wall, can be turned into augmented interfaces for in-
teraction [37]. This unique quality makes projection-based
interfaces particularly attractive for the seamless integration
of novel technologies—including collaborative robots—into
human environments with well-established infrastructures.

The use of projection-based interfaces has also been ex-
plored in the context of human-robot interaction (e.g., [3,
9, 12, 19, 31]). Such interfaces have mainly been used as a
visualization method to display or convey spatial informa-
tion in a situated manner. For example, this type of interface
has been used as a communication medium that projects
robot intent and task instruction to humans [12] so as to
facilitate close collaboration between human workers and
robot collaborators. However, in order to accurately project
onto objects in the environment, this work assumed the 3D
models of the objects were provided; unfortunately, these
models are usually not available to end-users. In contrast to
projecting robot intent, Ishii et al. used a projection inter-
face for robot control with a laser pointer, and illustrated
an iterative process for designing natural laser gestures [19].
Another relevant prior work is a point-and-click interface
for specifying objects in the environment for robot manip-
ulation [22], although it did not have a projection interface
for the communication of robot and system states. Different
from these prior works, this present one will use a projection-
based interface for communication, action sensing, and task
control.

3 PATI

In this section, we first present a “language” based on simple
illustrations and gestures for robot programming. We then
describe the PATI system, a proof-of-concept system that
implements this illustration-based language to allow users
to program a robot manipulator without substantial prior
technical training or a background in robotics and program-
ming.

Illustration-Based Language for Robot Programming

We envision an illustration-based language for task-level ro-
bot programming. We argue that this type of programming
paradigm can increase the accessibility of robot program-
ming and address a key challenge in programming robots
to operate in flexible environments, in which objects and
environmental landmarks are not predefined (as opposed to
automation scenarios with predefined procedures and task
configurations). Below, we describe an illustration-based lan-
guage for robot programming, detailed in terms of syntax,
semantics, and a composite program.
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Pinch, zoom, & rotate Pan
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Figure 2: Users can use pinch, zoom, or rotate gestures to resize or rotate a tool, a panning gesture to move the tool, and a swipe

gesture to open and close the Tools Menu.

Syntax. At the syntax level, an illustration-based language
supports various basic elements, such as tools and attributes.
These elements can be specified and manipulated by users’
gestural input. The examples described below are not ex-
haustive and can be expanded and modified to meet users’
needs.

e Selection Tools: The Selection Tools can be used to
select objects and define areas or landmarks in the
workspace. These tools include common shapes (e.g.,
circles and squares) and free-form drawing (e.g., using
a finger as a pen to draw a shape for selection). A Se-
lection Tool has different attributes to denote different
types of selections. For example, in PATI, an Object
Selection Tool is represented as a circle, while an Area
Selection Tool is in the shape of a square. Users can
manipulate the Selection Tools using common ges-
tures, such as a drag gesture to move them and a pinch
gesture to resize and rotate the tools (Figure 2).

e Action Tools: An Action Tool specifies a task-level ac-
tion that a robot can perform, and that can be attached
to Selection Tools. For example, to move a group of
objects from location A to location B, a user can se-
lect the objects using a Selection Tool, define a target
area, and attach an Action Tool of “move-to” to the
Selection Tool. A user may also need to specify other
action-relevant information for the Action Tool; In the
move-to example, the user should “link” the Action
Tool to the target area. All of these specifications can
be indicated through gestural commands.

o Attributes: Tools, objects, and the environment can
be annotated with attributes; such attributes can be
user-defined or system-generated. Attributes define
the properties and behaviors of tools. As an example, a
user can apply a color attribute to a “move-to” Action
Tool to specify how objects in the Selection Tool may
be sorted by their color (Figure 9 (a)).

Semantics. While syntax provides the basic tools and ele-
ments of the system, semantics describes their meanings and

uses in a program. We note that the semantics of an element
are customizable; for instance, an arrow can be defined to
highlight a specific object or area of interest rather than only
denoting the meaning of “move-to.” The default semantics of
an element can also be overwritten by an attribute applied
to that element.

Program. A program is a composite of tools and their asso-
ciated meanings. Users can use gestures to manipulate tools,
annotate task-relevant landmarks in the environment, and
compose programs. A program runs until its specified tasks
are finished or it is terminated by the user. In the example of
moving a group of objects from location A to location B, the
program executes multiple pick-and-place tasks until all the
objects at location A are moved into the target area. We note
that in this example, “looping” was implicitly embedded in
the program specified by the user.

System Overview

The PATI system implements the illustration-based language
described above, and allows users to program a robot manip-
ulator directly on a table-top surface through an intuitive
tangible interface. The system involves the use of a UR5 ro-
bot manipulator, which is a popular robot platform with a
built-in programmable interface, a top-down projector, and a
Kinect2 RGB-D camera mounted on the ceiling. The Kinect2
camera and the projector are calibrated to each other, but not
to the table surface. Besides the hardware setup, the PATI
system consists of four software modules: Visual Perception,
Tangible User Interface (TUI), Program Synthesis, and Robot
Control, as illustrated in Figure 3. The modules of Visual
Perception, Program Synthesis, and Robot Control were im-
plemented in the Robot Operating System (ROS) [29]. The
TUI was implemented in Unity.

The Visual Perception module detects and tracks objects
in the environment, as well as a user’s touch input, through
the use of depth data and RGB color images from the Kinect2
camera. The user’s input is then sent to the TUI module, in
which different types of gestures are recognized (Figure 2).
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Figure 3: The PATI system is composed of four modules: Vi-
sual Perception, Tangible User Interface, Program Synthesis,
and Robot Control.

Once the user completes his/her program specification via
the interface, the Program Synthesis module translates the
user’s task-level specifications into a set of robot commands,
including gripper actions and the waypoint specifications
of intended trajectories. The commands are then forwarded
to the Robot Control module, which subsequently generates
motion plans based on the input commands for robot ex-
ecution. Below, we provide implementation details of the
software modules.

Visual Perception

The Visual Perception module handles the detection and
tracking of objects and the user’s gestural input.

Object Detection. We used the Point Cloud Library (PCL) [30]
to detect objects on the table’s surface. The input point cloud
was first downsampled using a voxel grid filter. The result-
ing point cloud was further processed using the Random
Sample Consensus (RANSAC) method [11] to identify the
dominant plane surface in the point cloud; the dominant
surface in our context was the table surface. We then per-
formed Euclidean clustering on the cloud points that were
above the table surface to identify and segment objects. The
pose, shape, and size of the objects were recorded and used
for object tracking. This process of object detection ran at
approximately 10 frames per second, which was adequate in
our context. The grasp position of each object was inferred
from the shape of the object by finding the minor axis of the
minimum enclosing ellipse.

Touch Detection. We used depth images from the Kinect2
to detect fingertips, following a processing pipeline similar
to that suggested by Xu et al. [39]. First, we generated a
binary mask for everything detected above the table surface,
including hands and objects (Figure 4 (a)), by thresholding the
depth image. We then found the contour of each individual
image blob, as shown in green in Figure 4 (b). To extract the
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Figure 4: Fingertip detection. (a) Binary masks of hand and
objects. (b) Contour and convex hulls are shown in green and
red, respectively. (c) Detected fingertips based on the finger-
tip angle. The fingertip depths are the mean depth inside a
surrounding window.

hand, the blobs were further filtered using heuristics based
on size, shape, and position on the table. Once the hand
was extracted, we computed its convex hull and convexity
defects. The convex hull, as depicted in red in Figure 4 (b),
was defined as the smallest convex polygon enveloping the
contour. As shown in Figure 4 (b), the fingertips were among
the parts of the convex hull that overlapped with the contour.

To find the fingertips, we iterated through all the convex-
ity defects (Algorithm 1). A convexity defect is a deviation
in a contour from its hull and is represented by four param-
eters: the start point and end point of the hull edge from
which the blob contour is deviating, the farthest point of the
contour from the hull edge, and its approximate distance to
the hull edge. In Figure 4 (b) & (c), start points are orange cir-
cles, end points are light blue circles, and the farthest points

Algorithm 1 Find fingertips from binary blob image

Require: cd: list of convexity defects
fts: an empty list of detected fingertips
function FINDCANDIDATEFINGERTIPS(cd)
for all defect;,defectis; € cd do
start;, end;, far;, dist; = defect;
start;y1, endiiq, fariiq, distiy; = defectiiq
fingertip_point = (end; + starti.1)/2
fingertip_width = Distance(end;, start;1)
left_far = fingertip_point — far;
right_far = fingertip_point — fari4,
fingertip_length = Max(left_far,right_far)
—1 left far-right_far
left_far|lright_far|
15° < fingertip_angle < 60° &
if | fingertip_width < 20mm &
fingertip_length > 30mm
Append fingertip_point to fts
end if
return detected_fingertips
end for
end function

fingertip_angle = cos

then
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Algorithm 2 Find pressed fingertips

Require: img: the depth image
fts: list of the detected fingertips
d: window size
function FINDPRESSEDFINGERTIPS(img, fts, d)
pressed_fingertips =[]
for all f € ftsdo
fingertip_window « window of size d X
d at (fx, fy) in img
fingertip_depth = Mean(fingertip_window)
if fingertip_depth — tabletop_depth < 15mm
then
Append f to pressed_fingertips
end if
end for
return pressed_fingertips
end function

are the blue dots in between fingers. To detect fingertips,
we calculated the angle between the farthest points of two
neighboring convex defects. We empirically determined that
15 to 60 degrees of an angle represented a fingertip (Figure 4
(©)).

We used Algorithm 2 to determine whether or not users
were interacting with the interface through gestural input.
In brief, if the depth of a detected fingertip was under 15mm
above the table surface, the user was using the interface. The
depth of a fingertip was calculated based on the mean of a
window around the fingertip, as illustrated in Figure 4 (c).

For effective tracking, the fingertips were registered be-
tween frames based on the difference in positions. To further
obtain stable, smooth tracking, registered fingertips were
filtered using the “1€ filter” This filter is a first-order, low-
pass filter with an adaptive cutoff frequency [7]; it has a
low cutoff frequency at low speeds, which reduces jitter, and
a high cutoff frequency at high speeds, which reduces lag.
The processed fingertips were passed to Unity continuously
through the TUIO protocol designed for table-top tangible
user interfaces [21].

Tangible User Interface

Our TUI module handled the projection of the user interface
(Figure 5) and converted fingertip input from the percep-
tion module into common gestural commands. We utilized
TouchScript?, a multi-touch library for Unity, to implement
multi-touch gesture recognition in PATI. Our current im-
plementation supports common gestures for touch-based
interaction, including pinch, zoom, rotate, pan, and swipe.

Zhttp://touchscript.github.io
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Figure 5: PATT’s tangible user interface contains a Tools
Menu for spawning tools, a Control Panel for program-
related operations, and Operation Menu triggered by double
tapping a Selection Tool.

In our current implementation, the TUI has three main
areas—the Canvas, the Tools Menu, and the Control Panel.
The Canvas is the workspace where users can provide task
specifications. The Tools Menu houses different tools that
users can choose. In our current system, we use circles to
represent Selection Tools for selecting objects of interest,
and squares to represent Selection Tools for specifying an
areal landmark (e.g., a target area). Each Selection Tool has
its associated Operation Menu, through which a user can
confirm the selection, set attributes, and apply an intended
action to the selection. The Operation Menu is triggered by
double tapping the Selection Tool. Once the Tools are set and
confirmed, the interface sends relevant Tool information (e.g.,
the position and shape of a selected object) to the Program
Synthesis module using ROS#*, an open-source library for
communicating between ROS and Unity. Finally, after all the
task-relevant specifications are made, users can launch the
program using the “play” button on the Control Panel.

Program Synthesis & Robot Control

The Program Synthesis module generates high-level robot
commands, whereas the Robot Control module creates low-
level executable motion plans. When receiving information
about confirmed user specification, such as object selection,
the Program Synthesis module identifies and tracks objects
inside the selection area by iterating through all the detected
objects on the table and keeping track of the objects inside
the selected area. When the user executes the program, the
module generates a set of Cartesian waypoints of the end-
effector’s action trajectory.

The generated waypoints for the pick-and-place of a single
object typically include six end-effector positions: the pre-
grasp position, the grasp position, the post-grasp position,

Shttps://github.com/siemens/ros-sharp
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the pre-place position, the place position, and the post-place
position. The robot trajectory starts with moving from its
current position to the pre-grasp position. The pre-grasp
position is close to the desired grasp point, which is inferred
from the pose, shape, and height of the target object. From
the pre-grasp position, the robot adjusts the orientation of its
gripper, if necessary, to reach the desired grasp point. After
grasping the object, the robot then moves to the post-grasp
position to avoid potential collision between the object and
the table. Next, the robot follows a shortest non-collision
path to the pre-place position. Once in the pre-place position,
the robot orients the object to conform with the desired
orientation, and places the object at its desired location on the
table. It then moves to the post-place position and continues
the rest of the task.

The Cartesian trajectory of the robot’s movement (output
from the Program Synthesis module) is sent to the Robot
Control module. Joint angles of the robot manipulator are
calculated by inverse kinematics on the Cartesian poses. The
motion planning of in-between poses is handled by Movelt!*

An Illustrative Example: Pick and Place

Here, we use the pick-and-place task to illustrate how a user
can utilize PATI to specify a table-top manipulation task.
Figure 1 depicts this example in action. The user first opens
the Tools Menu by swiping left from the right edge of the
table. He then spawns a Selection Tool (a blue circle) by tap-
ping the corresponding icon on the menu. He can further
resize and rotate the Selection Tool using two-finger pinch
gestures, and drags the tool to where the objects are. Follow-
ing a similar procedure, the user can use a Selection Tool
(a red square) to designate the target area. In this example
of pick-and-place, the user then needs to specify an Action
Tool (i.e., “move-to”), shown as a white arrow, that links the
object selection and the target area. Upon the completion
of the specifications, the user executes the program via the
Control Panel. Other possible applications of PATI are shown
in Figure 9 and further discussed in Section 6.

4 EVALUATION

In this section, we present a user study to assess the effec-
tiveness of PATI in terms of task performance and usability.
In particular, we compared PATI with a common program-
ming by demonstration (PbD) method, kinesthetic teaching,
provided by the manufacturer in its teach pendant (Figure 6).

Hypothesis

Our central hypothesis is that the PATI system will help
participants achieve greater task performance in simple ma-
nipulation tasks such as pick-and-place, and offer higher

4http://moveit.ros.org

IUI ’19, March 17-20, 2019, Marina del Ray, CA, USA

Programming by demonstration
(e.g., physically moving the robot)

Programming using a UR5
teach pendant

Figure 6: A state-of-the-art method for robot programming
in industrial contexts. The user programs the robot with
a hybrid system of kinesthetic demonstration and a visual
programming interface.

usability to participants than the built-in PbD method for
the UR5. Specifically, we pose the following two hypotheses:

Hypothesis 1: Participants will be able to program a UR5
robot manipulator to complete a pick-and-place task in a
shorter time, make fewer mistakes, and ask fewer questions
during their programming task when using the PATI system
than when using the UR5 built-in PbD system.

Hypothesis 2: Participants will need a shorter practice time
before they feel comfortable with the programming interface
and report lower task loads when using the PATI system
than when using the UR5 built-in PbD system.

Study Design & Experimental Conditions

We manipulated the interface that participants used to pro-
gram a UR5 manipulator to complete a pick-and-place task.
We designed a within-participants study with two experi-
mental conditions as described below.

UR5 teach pendant: In this condition, participants used
the PolyScope programming interface provided by Universal
Robots® (the manufacturer of UR5) to complete the pick-and-
place programming task. Based on the original 173-page UR5
manual, we created an abridged version of the manual and
step-by-step instructions for the participants. In addition,
a programming template was provided to the participants
to show how to control the grippers and set waypoints for
the robot’s motion trajectory. This condition represents a
state-of-the-art method for robot programming in industrial
contexts (Figure 6).

PATI: In this condition, participants used the PATI system
to complete the pick-and-place programming task (Figure 1).
Similar to the UR5 condition, we provided participants with
instructions on how to use the interface.

Shttps://www.universal-robots.com
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For both conditions, the experimenter would show the
participants a demonstration video on how to use the re-
spective interface in addition to providing its paper-based
instructions. The order of the conditions presented to the
participants was counterbalanced.

Practice & Experimental Tasks

Our evaluation focused on simple manipulation tasks (pick-
and-place) fundamental to a variety of common functions
that robots are envisioned to assist people in performing.
Participants were allowed to practice using a given interface
to program the robot to pick an object on a table and move
it to a target area. The actual experimental task was similar
to the practice task, except that it involved two objects as
opposed to a single object.

Common PbD methods require users to physically move
the robot manipulator to go through the waypoints of a de-
sirable trajectory and to position the robot’s end-effector
appropriately so that it can successfully grasp an intended
object. An example of such a programming paradigm is il-
lustrated in Figure 6.

Measures

We used the following objective and subjective measures to
assess task performance and usability of the PATI and UR5
interfaces for robot programming.

Task Performance. We developed three objective measures
to assess the task performance of a robot programming in-
terface.

Task Time: We defined task time as the time needed by a
participant to complete the experimental task, starting from
programming the robot task and ending when the robot
finished the task. We note that the robot moved with the
same speed in both conditions.

Number of Task Mistakes: We counted the number of mis-
takes participants made during the experimental task. A
mistake was any unwanted effect produced by the robot,
including the following situations:

e The robot grasped the object in an unstable configura-
tion. This situation usually happened when a partici-
pant drove the robot’s gripper too close to the table,
presumably because they lacked a clear understanding
of low-level robot operations (Figure 8 (a)).

e The robot failed to pick or place an intended object due
to an inappropriate position or height of a waypoint
(Figure 8 (b) & (c)).

e The robot—especially its gripper—collided with the
environment, such as the table, or the other object
during its task execution (Figure 8 (d)).

When a mistake led to subsequent mistakes, only the first
was counted in our analysis.
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Number of Questions Asked: We also counted the number
of questions participants asked during the experimental task.
We note that the experimental task took place after the par-
ticipants felt comfortable with and had practiced using the
interface for a pick-and-place task involving a single object.

Usability. In this evaluation, we focused on two aspects of
usability: how much time users needed to be familiar with
and comfortable using a new interface, and users’ task load
when using an interface for a task of interest.

Practice Time: We defined practice time as the time from
when the participant made his/her first operation after the
experimenter presented the practice task to when they indi-
cated that they were ready for the experimental task.

Task Load: To measure task load, we adapted the NASA
TLX [15] for our context. Specifically, we used three items—
mental demand, physical demand, and effort—from the TLX
scale to assess task load (Cronbach’s a = .80).

In addition to the measures of task performance and us-
ability described above, we logged the number of waypoints
participants recorded when using the UR5 interface. This
measure serves as a proxy for understanding the participants’
conceptual models of how the robot operates.

Study Procedure

After obtaining a participant’s consent, the experimenter
provided an overview of the study. The participant was ran-
domly assigned to one of the two experimental conditions
and given the necessary instructions and tutorial materials
regarding the first programming interface. After viewing the
materials, the participant was allowed to practice using the
given interface with a simple pick-and-place task. During
the practice session, the participant could review the instruc-
tional materials as they wished and ask the experimenter any
questions they might have. The participant then moved on
to perform the experimental task once they felt ready to do
so. After the experimental task, the participant was asked to
fill out a questionnaire regarding their experience using the
interface, and was then introduced to the other programming
interface. Similar to the procedure of using the first interface,
the participant viewed relevant instructional materials, prac-
ticed using the interface, performed the experimental task,
and filled out a post-interaction questionnaire. The study
concluded with the experimenter collecting the participant’s
demographic information and interviewing the participant
for additional comments. The study took approximately one
hour and the participants were compensated with $10.

Participants

We recruited 17 participants (9 females and 8 males) on a
college campus for this study. The participants were aged
23.48 years on average (SD = 4.81). The participants reported
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Figure 7: Box and whisker plots of data on the objective measures of task performance and the subjective measure of usability.
The top and bottom of each box represent the first and third quartiles, and the line inside each box is the statistical median
of the data. The length of the box is defined as the interquartile range (IQR). The ends of the whiskers are the first quartile

minus 1.5 IQR and the third quartile plus 1.5 IQR.

having familiarity with robots (M = 4.00, SD = 1.97) and
programming (M = 4.18, SD = 1.88) on 1-to-7 rating scales
(7 being most familiar). The participants had a variety of
educational backgrounds, including engineering, psychology,
writing, and medicine.

5 RESULTS

In this section, we report the results of our evaluation study,
summarized in Figure 7. We used non-parametric Wilcoxon
signed-rank tests according to the distribution of the ana-
lyzed data. For all the statistical tests reported below, we
used an « level of .05 for significance.

Task Performance

Our first hypothesis stated that participants would be able
to program a UR5 manipulator to perform a simple pick-and-
place task in a shorter time, make fewer mistakes, and ask
fewer questions during their task when using PATI than they
would when using the built-in programming interface for
URS5. Overall, our results supported this hypothesis.

Task Time. Our data showed that participants needed sig-
nificantly less time to complete the experimental task when
using PATI than they did when using the UR5 interface,
Z =3.62,p < .001.

Number of Task Mistakes. Our data indicated that the par-
ticipants did not make any mistakes when using the PATI
system, whereas they made more than one mistake on aver-
age when using the URS5 interface, Z = 3.23,p = .001.

Number of Questions Asked. We found that the participants
asked the experimenter fewer questions when using PATI
than they did when using the URS5 interface during the task,
Z = 1.73,p = .084. We note that the observed difference was
only marginal.

Usability

Our second hypothesis stated that participants would need
a shorter practice time before they felt comfortable with the
programming interface and would have lower task loads
when using PATT than they would when using the built-in
programming interface for UR5. Our results supported this
hypothesis.

Practice Time. Our data showed that the participants needed
significantly less time before they became familiar with the
programming interface and felt ready for the experimental
task earlier when using PATT than they did when using the
URS5 interface, Z = 3.34,p < .001.

Task Load. Self-report data suggested that the participants
experienced less task load when using PATI than when they
used the URS5 interface, Z = 2.41, p = .016.

Quality of Task Demonstration

In addition to task performance and usability, we also mea-
sured the number of waypoints that participants recorded
when they demonstrated the pick-and-place task of two dif-
ferent objects via the UR5 interface. The number of way-
points used varied among the participants, ranging from 5 to
13 points (M = 9.12,SD = 2.62). This variance showed that
the participants had varying understandings of the robot’s
mechanical operations and motion plans. For the experimen-
tal task, fewer than 10 waypoints tended to cause mistakes.
We next present common mistakes observed in the partici-
pants’ demonstrations of the pick-and-place task.

Common Mistakes in Task Demonstration

One of the challenges in traditional robot programming by
demonstration (e.g., kinesthetic teaching) is object/landmark
referencing. Our results indicated that the participants using
the URS5 teach pendant interface were likely to make mistakes
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Figure 8: Examples of the three kinds of mistakes commonly
made by the participants: (a) the gripper picks up the object
in an unstable configuration; (b) and (c) the gripper fails to
pick or place the object; (d) the gripper collides with objects
while performing a task.

in their programs; our observation of their programming
sessions revealed some common mistakes. The most common
mistake was object collision, where the robot’s movement
during its transportation of an object caused a collision with
another object in the environment (Figure 8 (d)). This mistake
was due to the manual teaching of trajectory waypoints and
a lack of understanding of the robot’s motion plans between
the demonstrated waypoints. Without additional perceptual
augmentation, traditional kinesthetic teaching is error-prone
and has limited scalability. For example, a user would need
to provide a kinesthetic demonstration for each object of
interest.

Other common mistakes included moving the gripper too
close to the table surface, thereby causing an unstable grasp
of the object (Figure 8 (a)), and setting the release position
way above the surface, thus causing the object to drop onto
the table (Figure 8 (b)). These mistakes were all due to the
lack of understanding of the operational mechanism of the
manipulator and its gripper, which most end-users would
not previously have. Some of our participants were master’s
students in a specialized robotics program. Even with tech-
nical training and prior experience of working with robot
manipulators, they still made these common mistakes.

While some mistakes are less critical and only impact task
performance, others may have serious negative effects, such
as breaking objects or damaging the robot. For instance, one
participant in our study accidentally drove the robot to hit the
table. Therefore, it is crucially important to have an intuitive
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interface for end-user robot programming. The PATI system
explores a promising interface for robot programming.

6 DISCUSSION

In this paper, we present an illustration-based method for
robot programming and introduce PATI, which implements
the method as a proof-of-concept system. The PATI system
allows users to program a robot manipulator to perform sim-
ple table-top manipulation tasks directly on a work surface
through the use of common gestures and tools. An empirical
evaluation comparing PATI with a state-of-the-art method
for robot programming by demonstration shows the effective-
ness and potential of PATI for end-user robot programming.
In particular, our results reveal that participants were able
to learn how to use the programming interface in a shorter
period of time, achieved a greater task efficiency, and had
less task load when using PATI than they did when using
the state-of-the-art PbD system. Below, we discuss possible
applications that PATI can support, as well as the limitations
and future directions of this work.

Applications of PATI

While this paper is focused on the presentation and discus-
sion of PATT in the context of the pick-and-place task, the
PATIT system can easily be extended to support other various
tasks and applications. Here we present four possible manu-
facturing scenarios that PATI can support: sorting, assembly,
alignment, and inspection (Figure 9).

In a sorting scenario, users can use action attributes to
specify how they would like a group of objects sorted. In
the example in Figure 9 (a), objects are sorted based on the
color of the action arrow. In the assembly example shown

- g
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Figure 9: Possible applications of PATI include (a) sorting,
(b) assembly, (c) alignment, and (d) inspection. The colored
arrows in (a) and (b) represent how objects would be sorted
based on color attributes.




PATI: A Projection-Based Augmented
Table-Top Interface for Robot Programming

in Figure 9 (b), the robot sorts assembly parts into bins that
the user can access. Once finished putting the parts together,
the user places the assembled product into an outgoing area
for the robot to fetch for the next step (e.g., inspection and
kitting). Figure 9 (c) shows an example of object alignment,
which underlies various kitting applications. Similar to the
assembly scenario, the inspection example shown in Figure 9
(d) involves the robot bringing products to the user for in-
spection, as well as taking inspected products to the next
processing step.

In addition to manufacturing applications, illustration-
based robot programming may substantially reduce the tech-
nical barriers to utilizing personalized robot assistance for
laypeople. For example, older adults may use simple gestures
and tools to request assistance from their personal robots.
Our future work involves deploying PATI in real-world set-
tings to explore its possibilities and limitations.

Limitations & Future Work

While our results suggest the potential of illustration-based
robot programming and the PATT system, the present work
has limitations that highlight directions for future research.
A key ingredient of touch-based interaction is the reliable
sensing of user input. Although the current implementation
of PATI affords reasonable gestural interaction, it can be
further improved. A participant commented, “I really liked the
new interface. [The PATI system] needs some tuning on finger
recognition and gesture recognition, but [it] is clearly superior
to the traditional UR5 interface for this task.” To address this
limitation, we will build on other successful methods for
robust touch sensing (e.g., [38]) to ensure a quality user
experience.

The possibilities of illustration-based robot programming
are abundant. So far, PATI implements only a small set of ges-
tures and task tools. Future work needs to explore both the
breadth and depth of illustration-based robot programming
by developing and evaluating new task tools, action opera-
tions, and input styles. Moreover, in addition to task-level
specification, future work should explore how this novel
programming paradigm may be used to craft motion-level
and goal-driven social robot behaviors (e.g., [17]). Future
research should also investigate ways to minimize environ-
mental modifications (e.g., integrating the capabilities of pro-
jection and 3D sensing into the robot) and the needed system
calibration to allow people to use it with ease in custom con-
texts. Finally, our evaluation involved a few participants who
have some familiarity and experience with robotics. To truly
understand the effectiveness of PATI for naive end-users,
future evaluations should involve users who do not have any
technical background or prior experience.
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7 CONCLUSION

In this paper, we present a Projection-based Augmented
Table-top Interface (PATI) for robot programming. PATI al-
lows users to utilize common gestures and tools to specify
robot tasks without coding. It also supports direct anno-
tation in and reference to the environment to address the
challenge of robot performance in a custom environment. A
user evaluation showed that participants were able to learn
and use PATI to program a robot manipulator to perform
simple manipulation tasks efficiently and effectively. This
work contributes to the broader vision of intuitive end-user
robot programming.
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