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ABSTRACT
A common practice in education to accommodate the short
attention spans of children during learning is to provide
them with non-task breaks for cognitive rest. Holding great
promise to promote learning, robots can provide these breaks
at times personalized to individual children. In this work,
we investigate personalized timing strategies for providing
breaks to young learners during a robot tutoring interac-
tion. We build an autonomous robot tutoring system that
monitors student performance and provides break activities
based on a personalized schedule according to performance.
We conduct a field study to explore the effects of different
strategies for providing breaks during tutoring. By compar-
ing a fixed timing strategy with a reward strategy (break
timing personalized to performance gains) and a refocus
strategy (break timing personalized to performance drops),
we show that the personalized strategies promote learning
gains for children more effectively than the fixed strategy.
Our results also reveal immediate benefits in enhancing ef-
ficiency and accuracy in completing educational problems
after personalized breaks, showing the restorative effects of
the breaks when administered at the right time.
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1. INTRODUCTION
Among the large variety of learning technologies available,

social robots have shown great promise as tutoring agents
[9, 10, 29]. The advantages of physical embodiment espe-
cially help establish effective human-robot interactions [25,
33]. Prior human-robot interaction (HRI) research has also
demonstrated that embodied tutoring agents can increase
cognitive learning gains [15]. Moreover, robots can increase
enjoyment and can provide social and emotional support [12,
22, 27] to facilitate effective learning. In addition, robots can
personalize their tutoring strategies to meet various needs,
such as different learning capacities and readiness levels, and
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Figure 1: We studied personalized strategies for providing
breaks to promote children’s learning during one-on-one tu-
toring interactions with a robot.

can provide individualized experiences to maximize learning
outcomes for students. As informed by the intelligent tutor-
ing systems (ITS) community (e.g., [2]), prior HRI work has
explored the impact of personalization on student learning
and has demonstrated that personalized learning interac-
tions can greatly benefit student learning outcomes [14, 26].
However, prior work has mainly studied content personal-
ization, focusing on providing educational content that suits
the student’s ability and progress.

Aside from educational content, one crucial aspect in a
learning interaction is the student’s engagement and atten-
tion, particularly for younger learners who often have short
attention spans. The attention spans of children can be
as short as five minutes in a learning interaction [23], and
the capacity for sustained attention only develops signifi-
cantly between age 11 and adulthood [17]. Accommodating
this need in learning interactions for young students is ex-
tremely important. Research has suggested that breaks are
beneficial and provide needed cognitive rest during learning
[1, 16]. Moreover, interspersing non-task breaks into an ex-
tended learning task may reduce interference and strengthen
the learner’s performance [3, 32]. Therefore, to effectively
promote learning for younger students, robots need to intelli-



gently provide necessary breaks over the course of a learning
interaction (Figure 1).

Break timing—when to provide a break—is particularly
important, as it allows students to have needed cognitive
rest at the right time. In a traditional learning environ-
ment, such as a classroom, breaks are usually taken at reg-
ular intervals. On the other hand, in a tutoring interaction,
breaks can take place at times personalized to an individ-
ual. Breaks can be positive reinforcers for desired behavior
(e.g., improved learning performance). Alternatively, breaks
can be an opportunity for students to refocus after experi-
encing a decline in learning performance. In this work, we
explore how a tutoring robot can provide breaks following
a personalized schedule based on learning performance and
seek to understand how such personalization might influence
student learning outcomes.

2. BACKGROUND
In this section, we present literature showing that breaks

can contribute to effective learning, and offer evidence about
different ways to provide these breaks. We then review prior
HRI work involving personalization in learning.

2.1 Non-task Breaks and Learning Gains
Breaks—pausing the current task to rest or to work on

a different task—are beneficial for cognitive- and attention-
loaded tasks. For example, during cognitive work involv-
ing recognition memory, breaks can foster achievement gains
[32]. Furthermore, breaks of varying lengths can have restora-
tive effects on reaction time during an auditory response task
[16]. Accordingly, breaks play an important role in learning,
a complex activity demanding the learner’s cognitive atten-
tion. Learning can be particularly challenging for children,
as their attention spans can be quite short, making them sus-
ceptible to distractions during learning [3, 23]. In support
of this need, a common educational practice is to provide
breaks throughout a school day at scheduled times. Pri-
mary schools in various countries that allow children to take
10- to 15-minute breaks every 40 to 45 minutes of classroom
instruction report increased attentiveness after the breaks,
indicating the importance of breaks during learning [20, 21].
However, limited time and resources during a school day ne-
cessitate that all children receive these breaks at the same
time. Each individual has different learning needs and var-
ied attention spans, suggesting that these non-task breaks
may be most useful if provided at the “right” time.

Alternative educational practices suggest that non-task
breaks could be provided in ways more personalized to each
individual. For example, success-based rewards can enhance
performance [24]. This provides evidence for one design of
a personalized timing strategy for breaks in which breaks
are used as success-based rewards for students demonstrat-
ing learning improvement. This strategy uses these breaks
as a positive reinforcer for desired performance improve-
ments. Another classroom practice, positive time-out, in-
forms a second design of a personalized timing strategy to
prevent or mitigate negative emotions. “Positive time-out”
allows a child to take a brief break to avoid outbursts caused
by affective reactions such as frustration [18]. Students can
experience a wide variety of negative emotions during learn-
ing, often due to poor performance, and these can have a
further negative impact on learning gains [19]. Thus, this

strategy provides breaks during moments of potential nega-
tive emotion to enhance learning gains.

2.2 Personalized Robot Tutoring
Social robots have been shown to be a promising edu-

cational technology, largely because of their capabilities to
provide personalized instruction for individual students [5].
Prior work done in this domain has focused on content-based
personalization where the robot’s personalized behavior di-
rectly involves the content of the learning task at hand. For
example, Leyzberg et al. showed that providing personalized
lessons based on an assessment of a person’s skills on a cog-
nitive task could significantly improve performance as com-
pared to those who received non-personalized lessons or no
lessons at all [14]. Westlund and Breazeal demonstrated that
children showed vocabulary improvements in a story-telling
task over time when the robot personalized the difficulty
level of the words to match the child’s ability [34]. Another
relevant study by Schadenberg et al. explored the personal-
ization of the difficulty level of a game that children played
with a social robot, demonstrating that the level could be
effectively adapted to each individual according to an on-
going assessment of the child’s performance [28]. Different
from prior studies, in this work, we explore how non-content
personalization can impact learning outcomes.

Learning is a complex process involving a variety of sup-
portive mechanisms that are often not directly related to
the cognitive task at hand, such as help-seeking behavior,
affective support, and rapport-building. Prior work in HRI
has explored how robot tutors might personalize their be-
havior based on some of these supporting mechanisms. For
example, Ramachandran et al. showed that a robot em-
ploying adaptive strategies that regulate a child’s use of help
while solving math problems can improve learning gains [26].
Gordon et al. studied a robot employing affective person-
alization and used reinforcement learning to discern which
affective states each child preferred for the robot during a
learning interaction [4]. Similarly, Henkemans et al. demon-
strated the potential of a health education robot that per-
sonalized its behavior towards a child by referring to the
child’s name, favorite activity, and color during conversation
[6]. Our work explores the personalization of the timing of
when to provide breaks during tutoring to enhance learning.

The HRI community has further explored computational
methods to estimate the engagement or attention of a user
and has studied how robots can utilize the estimation to
create effective learning. Leite et al. built data-driven clas-
sifiers to detect disengagement in groups of children versus
individual children [11]. Other recent work by Lemaignan
et al. defined an online method of assessing a child’s at-
tention during a learning interaction [13]. Szafir and Mutlu
showed that a robot can monitor attention in real-time based
on EEG sensor data and use this information adaptively to
improve student recall ability [30]. Rather than elaborated
estimation of attentional state, our work uses performance-
based features during learning to guide tutoring interactions.

3. ROBOT TUTORING SYSTEM
In this section, we provide an overview of our design of

an autonomous robot tutoring system (Figure 2). We also
present the personalized strategies and support mechanisms
implemented for our investigation of how the robot tutor
may personalize break timing to promote learning.
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Figure 2: System architecture of our robot tutoring system.

3.1 System Overview
Our robot tutoring system consists of three main software

components—performance monitor, activity scheduler, and
content selector. The performance monitor is responsible for
continuously tracking the student’s learning performance,
particularly his or her accuracy and efficiency at solving the
educational problems presented on a tablet. The activity
scheduler utilizes the collected performance information as
well as personalized strategies to decide when to provide a
non-task break activity during the student’s learning inter-
action. The content selector uses the student’s accuracy per-
formance to selectively pick subsequent educational content
that matches the student’s mastery of the learning material.
Specifically, the content selector decides the suitable diffi-
culty level of the problems presented to the student. We use
the Nao robot in our system to provide tutoring support.

3.2 Personalized Strategies
In this work, we explore three strategies for choosing when

to provide a break during a tutoring interaction. The imple-
mentation of these strategies will be discussed in Section 4.2.
Below, we describe the design rationale of these strategies.

Fixed strategy—This strategy provides breaks to stu-
dents on a fixed schedule at regular intervals, reflecting the
classroom practice that all children receive breaks at speci-
fied times rather than times particular to the individual.

Reward strategy—This strategy provides breaks as a
reward after good performance as informed by the educa-
tional practice of“success-based rewards” [24]. This strategy
seeks to postively reinforce desired learning improvement.

Refocus strategy—This strategy seeks to interrupt neg-
ative behaviors, such as distraction, during learning by pro-
viding a break when a drop in performance is detected. This
design is informed by the educational practice of “positive
time-out” [18], providing a student with the opportunity to
refocus by taking a break from the task at hand.

3.3 Support Mechanisms for Tutoring
In addition to the personalized strategies, our system also

implements several basic support mechanisms, including pro-
viding necessary information on the tablet application and
exhibiting engaging robot behaviors, to facilitate tutoring
interactions with young learners. All behaviors described in
this section apply to all students regardless of the assigned
conditions for the user study described in Section 4.2. At the
start of a tutoring session, the robot greets each student and
conducts a small, interactive lesson on an educational topic.
After the lesson, the robot presents a series of questions on
the taught topic for the student to practice. We carefully

designed robot behaviors to give the students the impression
that the robot was responsible for facilitating the learning
interaction. For instance, the robot looks at the students
when speaking and looks at the tablet while they work on
practice questions. The robot also uses gestures through-
out a session, often extending an arm towards the tablet to
invite students to direct their attention towards it.

The content selector chooses each practice question from a
bank of problems with multiple difficulty levels to accommo-
date a variety of learners. All students start with the lowest
level of questions available and can only advance to subse-
quent levels after demonstrating a specified level of mastery.
The robot provides feedback on whether an answer is cor-
rect or incorrect after each individual problem. If the an-
swer is incorrect, the robot also provides general feedback
about how to solve the problem, while the tablet displays
the associated worked-out solution. Moreover, the tutoring
application helps manage the flow of the tutoring interaction
by providing buttons on the screen that allow the student to
initiate the presentation of the next problem and disabling
buttons displayed on the tablet while the robot verbally de-
livers tutoring information. Upon reaching the allotted time,
the robot congratulates the student for completing a session.

4. METHODS
In this section, we describe a user study investigating the

effects of different personalized strategies for determining
break timing, as employed by the robot tutoring system de-
scribed in Section 3, on students’ learning outcomes.

4.1 Evaluation Context
The user study was contextualized in a tutoring interac-

tion in which children learned about mathematical concepts
and then practiced these concepts by completing problems
with the robot, thereby creating a repetitive learning inter-
action. Students completed a 40-minute learning interaction
to approximate the length of a scheduled class period during
an elementary school day. We present the educational con-
tent below, and provide a description of the non-task break
activities that were used across all experimental conditions.

4.1.1 Educational Content
We chose to teach two math concepts involved in “order of

operations” that the students had not previously learned in
their classrooms. Specifically, the students learned that mul-
tiplication comes before addition and subtraction (C1: mul-
tiplication), as well as the concept that parentheses come
before all other operations, including multiplication (C2:
parentheses). We designed practice problems for each of the
two concepts for three difficulty levels; examples are pro-
vided in Table 1. Students had to complete a minimum of
ten questions per difficulty level. Moreover, they needed to

Table 1: Examples of practice math problems for each of the
concepts and difficulty levels given to the students.

Level 1
Level 2
Level 3

C1: Multiplication C2: Parentheses

2 + 8 × 2
5 + 6 × 1 + 6 × 4

31 + 5 × 9 − 7 × 4

5 × (2 + 4)
6 + (2 + 6) × 7

8 + 8 × (1 + 5) + 3



(a) Game play: tic-tac-toe (b) Physical exercise: stretch activity (c) Refocusing activity: spot-it (d) Relaxation: breathing activity
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Figure 3: Four break activities that were received during the tutoring session. Each break activity lasted about two minutes.

achieve 70% accuracy to be considered to have mastery of
that difficulty level before advancing to the next level.

4.1.2 Break Activities
Throughout the tutoring session, the robot provided the

students with brief breaks from the learning activity. We
designed four break activities that leveraged the physical
and social nature of the robot, including game play, physi-
cal exercise, a refocusing activity, and relaxation, which all
students could receive in the same order (Figure 3). Each
activity lasted approximately two minutes and aimed to pro-
vide mental “rest” from the math-based task. The stretch
and relaxation breaks were specifically designed to be two
minutes long, whereas children completed as many rounds of
tic-tac-toe and the visual focus activity as they could within
two minutes. The robot engaged with the child during each
activity; the robot played tic-tac-toe against the child, led
the child in the stretch and relaxation exercises, and facili-
tated each round of the refocusing activity. Students were
not informed in advance that they would be receiving breaks,
thereby eliminating any initial expectation for breaks.

4.2 Experimental Design
We designed a between-subjects study involving three ex-

perimental conditions—fixed, reward, and refocus—that re-
alized the three strategies described in Section 3.2. The
only independent variable in this study was the timing of
the breaks. Table 2 summarizes the implementation of the
activity scheduler, listing the triggers that initiated breaks
in the experimental conditions. Below, we provide detailed
descriptions of the conditions and our implementation of the
triggering mechanisms used in all conditions.

4.2.1 Fixed Condition
In the fixed condition, the robot provided a break at reg-

ular intervals for each student regardless of their real-time
performance on the learning task. This design reflects the
classroom practice that all students get breaks at the same
time as everyone else, regardless of an individual’s need for a
break. Acknowledging the short attention spans of children
[23], we implemented the fixed strategy by providing a break
every six minutes, allowing most participating students to
receive the four distinct breaks over the 40-minute session.

4.2.2 Reward Condition
The reward condition, as informed by the educational

practice of“success-based rewards” [24], implemented the re-
ward strategy as described in Section 3.2. In this condition,
the robot provided a break to the user upon detection of sub-
stantial improvement during the session. The performance

monitor measured learning performance using two quanti-
ties: the accuracy of the student in answering questions cor-
rectly, and the time it took for the student to complete each
question. A local window of recent history (five questions)
of user performance (see Figure 4) was kept for both accu-
racy data and timing data as the session progressed. After
each question, the local window data was compared to the
entire history of data to understand whether there had been
a performance increase in accuracy and efficiency (timing).
The history data was reset when the difficulty level changed.

The implementation of the reward strategy can be repre-
sented conceptually as a decision tree (Table 2). First, the
strategy considered increases in accuracy (type 2). Subse-
quently, the strategy would consider improvements in timing
(type 3). Based on whether sizable changes (20%) occurred
with the local windows of accuracy and timing as compared
to the whole history, a break was given to the participant. If
no substantial performance changes occurred for ten consec-
utive questions, but the participant’s overall history of ac-
curacy remained high (≥70%), the student received a break
for performing consistently well (type 4).

4.2.3 Refocus Condition
The refocus condition, as informed by “positive time-out”

[18], provided a break upon detecting performance drops.
The implementation of this condition also relied on the per-
formance monitor calculating a local window of accuracy
data as well as timing data in the same way as previously
described for the reward condition. The conceptual deci-
sion tree structure applies here, as well: we first considered
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Table 2: Break triggering mechanisms for each condition. Percent changes from history to window data for accuracy and
timing are represented by ∆Accuracy and ∆T ime, respectively. Overall history accuracy is denoted by ahistory. N is the
number of times each type was triggered. The conceptual decision tree shows the order in which the triggers were considered.

Condition

Fixed

Reward

Refocus

Trigger
type

1

2
3
4

5
6
7
8

Description Implementation N

Six minutes elapsedFixed schedule

Accuracy improvement ∆Accuracy ≥ 20%
E�ciency improvement ∆Time ≤ −20%, ahistory ≥ 70%, |∆Accuracy| ≤ 20% 
Good performance over time { |∆Accuracy| , |∆Time| } ≤ 20% for 10 questions, ahistory ≥ 70% 
E�ciency drop ∆Time ≥ 20%, |∆Accuracy| ≤ 20% 
Low performance over time { |∆Accuracy| , |∆Time| } ≤ 20% for 10 questions, ahistory < 70% 
Timing drop, indicating guessing ∆Time ≤ −20%, ahistory < 70%, |∆Accuracy| ≤ 20% 
Accuracy drop ∆Accuracy ≤ −20%

39

43
0
1

14
2

15
13

Conceptual
decision tree

N/A

2
3
4

8
5 7

6 6

drops in accuracy (type 8), followed by changes in efficiency
as measured by time to complete each problem (types 5 and
7). If the drop in performance between the local window
and the entire history was sufficient (20%), a break was trig-
gered. If no sizable performance drops (20%) occurred but
the participant’s overall history of accuracy remained low
(under 70%) for ten questions in a row, the student received
a break for low overall performance over time (type 6).

4.3 Experimental Procedure and Setup
Both parental and child consent for each student was ob-

tained prior to conducting this study. Additionally, children
were informed that there were no negative consequences for
stopping the interaction at any time. Participating students
were removed from their classrooms one at a time for the du-
ration of approximately one hour each. Students were first
asked to complete a pretest, consisting of 12 questions, to as-
sess their knowledge of the learning concepts. Free-response
questions were used to prevent students from answering cor-
rectly due to guessing. After the pretest, students engaged
with the robot in a 40-minute tutoring session. This ses-
sion consisted of a short lesson from the robot, followed by
a series of practice problems for students to complete. Ac-
cording to the experimental conditions, the robot provided
corresponding breaks throughout the session. If more than
four breaks were triggered in a single tutoring session, the
break activities would repeat starting from the first one.

During the tutoring interaction, students sat at a table
in front of the robot and the tablet (Figure 1). Each child
interacted exclusively with the autonomous robot tutoring
system during the session, requiring no input from the ex-
perimenter in the study room. After the tutoring session,
students completed a posttest to assess their knowledge of
the learning concepts. Both the pretest and posttest were
the same length, including four questions of each of the
three difficulty levels, and were identical except the order
of the questions. Students also completed a brief question-
naire about their experience with the robot. Students were
given pencils and stickers after completing the entire study
and returned to their classrooms.

4.4 Measures
To explore how personalized break timing may impact

learning outcomes, we employ three objective measures: (1)

learning gains, (2) efficiency in problem solving, and (3) ac-
curacy in problem solving. We define normalized learning
gain (nlg) that captures the normalized difference between
pretest and posttest scores for each student i:

nlg(i) =
scorepost(i) − scorepre(i)

1 − scorepre(i)

Both the pretest and posttest scores are represented as ac-
curacy scores calculated by dividing the number of questions
answered correctly by the total number of questions. This
nlg metric, ranging from −1.0 to 1.0, provides an index of
improvement for each student, accounting for differing in-
coming knowledge levels.

In addition to learning gains, we seek to understand whether
the break activities have any immediate effects on student
performance in completing each problem. To this end, we
calculate average efficiency and accuracy in solving prob-
lems, using a window of five problems, before and after each
break. As breaks were initiated by different trigger types
(Table 2), we assess the difference between performance be-
fore and after the breaks separately for each trigger type.

4.5 Participants
Forty students were recruited from elementary schools to

participate in this study and were randomly assigned to one
of three experimental conditions. Two participants were ex-
cluded from this data analysis due to non-compliance and
technical problems during data collection, resulting in a to-
tal of 38 participants (13 females). Among the 38 partici-
pants, there were 12, 14, and 12 participants in the fixed,
reward, and refocus conditions, respectively. The partici-
pating students were in third grade; the average age was
8.53 years old (SD=.60). The groups were gender balanced,
and there were no major differences found between the three
conditions regarding age. Pretest scores for the three groups
were: Fixed (M = .33, SD = .33); Reward (M = .18,
SD = .28); Refocus (M = .25, SD = .18). A one-way
ANOVA showed no statistical differences between the three
groups, F (2, 35) = 1.04, p = .363, regarding the pretest.

5. RESULTS
In this section, we first present findings characterizing how

the robot tutoring system was used by students, to provide a
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basis for our further data analyses. We then present results
on student learning gains and performance during problem
solving (summarized in Figure 5). For all the statistical tests
reported below, we used an α level of .05 for significance.
We used non-parametric statistical tests when appropriate
according to the distribution of the analyzed data.

5.1 Characterization of Tutoring Sessions
Participating students were from differing backgrounds

and were not able to make homogeneous progress through-
out the sessions. Across the three conditions, 52.6% of the
students remained in level one for the entire session, 26.3%
progressed to level two, and 21.1% were able to progress to
level three. Due to such diversity, in the following section, we
focus our analyses on student performance on level one as-
sessment questions to draw fair comparisons. While students
received a varying number of break activities according to
the timing strategies, the average number of breaks provided
per student was 3.74, and this was not significantly different
across conditions, F (2, 35) = .749, p = .480. Moreover, the
number of breaks received and normalized learning gain were
not correlated for participants in all groups, r(36) = .10,
p = .540 (Pearson correlation). Furthermore, not all types
of triggers were initiated equally during the sessions. The
number of times that triggers were initiated is summarized
in Table 2. In the reward condition, trigger type 2 (accuracy
improvement) was initiated most frequently, whereas type 3
was never initiated and type 4 was only initiated once. In
the refocus condition, trigger types 5, 7, and 8 occurred at
a comparable rate, while type 6 was only observed twice.
Accordingly, we considered trigger types that were initiated
more than twice, namely types 1, 2, 5, 7, and 8, in our
analyses of the effects of each trigger type.

5.2 Learning Gains
As less than 50% of the students advanced past the level-

one difficulty, we focused our analysis on level-one questions
to understand learning gains on content that all students
spent time practicing with the robot. To assess whether
students improved their scores from pretest to posttest, we
used Wilcoxon Signed-ranks tests, treating the test score as
a within-subjects measure, to assess each student’s learn-

ing gains over the course of the tutoring session. Figure
5 (a) shows each student’s score on the level-one difficulty
questions on both the pretest and the posttest, separated
according to experimental condition. Students in the fixed
condition had posttest scores (Mdn = 1.0, IQR = 3.0) that
did not differ significantly from their pretest scores (Mdn
= 1.0, IQR = 3.0), Z = −1.134, p = .257. For students
in the reward condition, posttest scores (Mdn = 2.0, IQR
= 1.25) were significantly higher than pretest scores (Mdn
= 0.0, IQR = 1.25), Z = −2.829, p = .005. Posttest
scores (Mdn = 2.0, IQR = 2.0) were significantly higher
than pretest scores (Mdn = 1.0, IQR = 1.5) for students in
the refocus condition as well, Z = −2.401, p = .016. These
results together show that the students who received per-
sonalized break timing strategies, either reward or refocus,
significantly improved their scores, while the fixed group did
not. These results provide evidence indicating that the per-
sonalization of when to provide breaks during a tutoring
interaction can positively impact learning.

Next, we compared normalized learning gains, nlg, be-
tween groups using a Kruskal-Wallis test. This analysis
showed marginal difference in nlg between the different con-
ditions, H(2) = 5.086, p = .079. To further understand
the potential benefits of personalized timing strategies, we
created a personalized group by combining the reward and
refocus groups. We then ran a Mann-Whitney test compar-
ing nlg between the fixed and personalized groups (Figure
5 (b)). This comparison showed that the normalized learn-
ing gain was significantly greater for the personalized group
(Mdn = .41, IQR = .69) than for the fixed group (Mdn =
0.0, IQR = .19), U = 89.000, p = .035.

5.3 Immediate Break Effects
Besides overall learning gains, we were interested in whether

certain trigger types provided immediate effects on efficiency
or accuracy during the tutoring interaction. Thus, we com-
pared average performance (both efficiency and accuracy)
for the window of five problems before and after each break
separately for each trigger type using paired t-tests. Results
for this analysis are in Table 3. These comparisons were
carried out for each distinct trigger type as we sought to un-



Table 3: Results of t-tests used to assess immediate effects of breaks on accuracy and efficiency by trigger type. (*) and (**)
denote p < .050 and p < .010, respectively. Significant results are shaded in green.

Trigger
type

1

2

Accuracy

Before A�er
M=0.50
SD=0.27

M=0.52
SD=0.35

t(38)=-0.387
p=.701

Before A�er
M=0.62
SD=0.24

M=0.50
SD=0.33

t(42)=2.412
p=.02*

5 Before A�er
M=0.54
SD=0.28

M=0.50
SD=0.37

t(13)=0.763
p=.459

7 Before A�er
M=0.51
SD=0.33

M=0.39
SD=0.28

t(14)=1.890
p=.080

8 Before A�er
M=0.22
SD=0.17

M=0.52
SD=0.28

t(12)=-3.987
p=.002**

E�ciency (Seconds)

Before A�er
M=45.42
SD=26.68

M=42.39
SD=26.21

t(38)=1.212
p=.233

Before A�er
M=24.92
SD=10.39

M=25.04
SD=10.79

t(42)=-0.089
p=.929

Before A�er
M=35.33
SD=8.10

M=26.66
SD=8.38

t(13)=2.765
p=.016*

Before A�er
M=16.85
SD=6.77

M=21.65
SD=7.56

t(14)=-3.064
p=.008**

Before A�er
M=38.28
SD=20.05

M=34.96
SD=16.90

t(12)=1.307
p=.216

39

43

14

15

13

NDescription

Fixed schedule

Accuracy improvement

E�ciency drop

Timing drop, indicating guessing

Accuracy drop

derstand how different timings of breaks (i.e., different types
of trigger) might shape student efficiency and accuracy.

5.3.1 Efficiency in Problem Solving
Our analysis revealed that trigger types 5 and 7 had sig-

nificant effects on how much time students spent on prob-
lems before and after breaks, as summarized in Figure 5
(c). Trigger type 5 was initiated when students’ efficiency
dropped while there were no sizable changes in their accu-
racy. Breaks triggered by type 5 improved students’ effi-
ciency significantly, as students spent significantly less time
solving problems after the breaks as compared to the time
they spent before the breaks. This result indicates that pro-
viding a break after this trigger may refocus the students,
thus leading to improved efficiency in solving problems.

Trigger type 7 represented the situation where students’
overall accuracy was not desirable, yet they spent less time
on problems at hand, suggesting guessing on answers with-
out investing time into each problem. Our analysis revealed
that students spent significantly more time after breaks initi-
ated by trigger type 7 than they did before. This increase in
time spent on problems may suggest that after the breaks
students were able to refocus their attention on the math
task. Finally, for trigger types 1, 2, and 8, there was no sig-
nificant difference in efficiency before and after the breaks.

5.3.2 Accuracy in Problem Solving
Results showed that trigger types 2 and 8 had significant

effects on average accuracy before and after the breaks (Fig-
ure 5 (d)). Trigger type 2 was initiated upon detection of a
local increase in accuracy, indicating that a student received
a break based on this trigger while improving performance.
The results of the t-test showed that average accuracy de-
creased after trigger type 2 was initiated. While the causes of
this drop were not certain, we speculated that these breaks
may have distracted some students in the short-term as they
received them when they were in the “flow” of improving.

In the refocus condition, trigger type 8 was initiated specif-
ically after a local performance drop was detected. Our
analysis showed that students significantly improved their
accuracy from before to after the breaks triggered by type 8.

This improvement in accuracy following these breaks further
suggests the restorative effects non-task breaks may have on
performance during learning when triggered effectively. For
trigger types 1, 5, and 7, there was no significant difference
in accuracy before and after the breaks.

5.4 Additional Observations
In addition to the statistical analyses on student learning

gains and perfomance in problem solving, we also made sev-
eral observations and formed a preliminary understanding of
students’ experience of interacting with our tutoring system.
Overall, we observed that the students were very engaged
with the robot. They glanced periodically toward the robot
and ocassionally touched the robot during the sessions. We
also observed students enjoying interacting with the robot by
expressing smiles and laughing. Additionally, most students
followed the robot’s instructions during breaks to stretch
their bodies and participated in the relaxation activity.

Students rated their experience with the robot tutoring
system positively on 5-point scales. There were no signifi-
cant differences on these ratings between the study groups.
In particular, students in the fixed (M = 4.83, SD = 0.39),
reward (M = 4.50, SD = 0.94), and refocus (M = 4.42,
SD = 0.79) groups felt refreshed after the provided breaks,
F (2, 35) = 1.028, p = .368. Students also wanted to have a
similar robot tutor to help with their math homework (fixed:
M = 4.42, SD = 1.24; reward: M = 4.50, SD = 1.02; refo-
cus: M = 4.75, SD = 0.62), F (2, 35) = .368, p = .695.

6. DISCUSSION
In this paper, we explore when a tutoring robot should

provide a break to children to promote their learning. To
this end, we developed an autonomous robot system to sup-
port tutoring interactions. We then conducted a field study
to use our robot system to engage young students in learning
math concepts. Our results showed that personalized timing
strategies for providing breaks during learning can benefit
students’ learning gains. We further found that some strate-
gies can lead to immediate performance benefits. Below, we
discuss challenges in robot-child tutoring and the benefits



of personalization we observed in our user study. We also
discuss the limitations of this work that inform future work
aiming to enable effective, personalized robot-child tutoring.

6.1 Challenges in Robot Tutoring
The major challenges in autonomous robot-child tutoring

center around the vast individual differences between chil-
dren during learning. In our study, less than half of the stu-
dents progressed past the questions of the starting difficulty
level. This observation indicates the diverse learning abili-
ties present among children. In addition, children are likely
to have differing preferences for teaching strategies of the
robot and break activities they enjoy. For example, learn-
ing by teaching is an alternative teaching strategy that has
been explored in HRI and may benefit learning for children
[7, 31]. An effective robot tutor should therefore accommo-
date these potential differences in learners. Moreover, these
robot tutors can employ nonverbal behaviors selectively to
facilitate learning. For instance, Huang and Mutlu demon-
strated that a robot emphasizing different types of gestures
can shape how well the users remembered the information
presented by the robot [8]. These challenges in diverse back-
grounds and varying preferences provide rich opportunities
for designing personalized interaction to promote learning.

6.2 Benefits of Personalization
Contributing to the increasing evidence showing the ben-

efits of personalization in human-robot tutoring (e.g., [14,
26]), results of this work demonstrate the positive impact
personalized break timing has on learning outcomes. While
children in all conditions seemed to enjoy the breaks, only
those in the personalized (reward and refocus) conditions
showed significant learning gains (Figure 5 (a)). Moreover,
the children with breaks on a personalized schedule outper-
formed those with breaks on a fixed schedule in terms of
learning gains (Figure 5 (b)). These results show the im-
portance of break timing during a learning interaction. Al-
though we did not observe significant learning differences
emerge as a result of employing different personalized strate-
gies, our implementation of the reward and refocus strategies
provide insight into how these strategies might be realized.
Additional work is needed to explore alternative personal-
ized strategies, such as a combination of the reward and re-
focus strategies, as well as other plausible implementation.

Our analysis also revealed that certain break triggers led
to immediate changes in efficiency and accuracy during the
tutoring interaction, providing design implications for robot
tutoring systems. Specifically, breaks triggered based on
negative performance changes led to desired immediate ef-
fects during learning, showing that performance-based met-
rics are useful features for providing breaks for cognitive
rest. For example, after taking a break initiated by trigger
type 5 (efficiency drop possibly signifying a negative affec-
tive state, such as disengagement), students improved their
efficiency in problem solving, indicating a potential restora-
tive effect following the break. Similarly, providing a break
after trigger type 7 (timing drop, potentially due to guess-
ing) prompted students to spend more time on problems,
suggesting the break’s potential to refocus the students on
the learning task. Finally, breaks provided after trigger type
8 (drop in accuracy, possibly signifying frustration or con-
fusion) led to an increase in accuracy following the break,
again showing the potential of these breaks to refocus young

learners. Together, these findings showed that the refocus
strategy providing “positive time-out” had a positive impact
on immediate learning performance.

However, these personalized triggers must be carefully
designed, as not all of them led to positive performance
changes. Initiating trigger type 2 to provide a break when
students were showing improved accuracy caused accuracy
to drop after the break. Interestingly, students receiving
breaks as success-based rewards still benefitted over the whole
session as evidenced by their improved test scores. More re-
search is necessary to obtain a more comprehensive under-
standing of the broader effects of this type of trigger.

6.3 Limitations and Future Work
While showing benefits of personalized timing strategies

for providing breaks, this work has limitations that inform
future research. In this work, we contextualized our study
in a single 40-minute one-on-one tutoring interaction. Par-
ticipating students only interacted with our robot system
once to learn two specific math concepts. Future research
needs to consider how such tutoring systems may help chil-
dren learn over several sessions and on a variety of learning
topics. Moreover, we employed performance metrics of ac-
curacy and efficiency to drive personalized strategies. While
these metrics directly indicate how well the student learned,
they do not capture information about visual attention, cog-
nitive load, and other related processes involved in learning.
Future work should include a variety of channels of informa-
tion (e.g., EEG [30] or head pose [13]) to more accurately
model user state during learning. A richer representation of
user state allows a robot tutor to provide a greater person-
alized learning experience. In addition, the robot’s social
character and role can affect a child’s engagement during
a learning task [35]. Future work should explore how the
social dynamics and the role of the robot (peer or teacher)
during tutoring may influence learning outcomes. Lastly,
this study focused specifically on when to provide cognitive
rest during tutoring. Additional work should explore differ-
ent implementations of various types of breaks.

7. CONCLUSION
In this paper, we investigated personalized timing strate-

gies for providing non-task breaks to children during a robot
tutoring interaction. We built an autonomous robot tutoring
system and conducted a field study to compare the effective-
ness of different break timing strategies in promoting learn-
ing. Results from our study showed that students receiving
personalized strategies were able to improve their test scores
from pretest to posttest significantly more than those receiv-
ing breaks on a fixed schedule. Furthermore, we found that
certain types of break triggers provided immediate benefits
for students to solve problems more efficiently and accu-
rately. Results of this work have positive implications for
creating effective, personalized tutoring interactions.
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