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Abstract—Efficient collaboration requires collaborators to
monitor the behaviors of their partners, make inferences about
their task intent, and plan their own actions accordingly. To
work seamlessly and efficiently with their human counterparts,
robots must similarly rely on predictions of their users’ intent in
planning their actions. In this paper, we present an anticipatory
control method that enables robots to proactively perform task
actions based on anticipated actions of their human partners. We
implemented this method into a robot system that monitored its
user’s gaze, predicted his or her task intent based on observed
gaze patterns, and performed anticipatory task actions accord-
ing to its predictions. Results from a human-robot interaction
experiment showed that anticipatory control enabled the robot
to respond to user requests and complete the task faster—2.5
seconds on average and up to 3.4 seconds—compared to a robot
using a reactive control method that did not anticipate user intent.
Our findings highlight the promise of performing anticipatory
actions for achieving efficient human-robot teamwork.

Index Terms—Action observation, gaze, intent prediction, an-
ticipatory action, human-robot collaboration

I. INTRODUCTION

Efficient teamwork requires seamless and tight coordination
among collaborators. In order to achieve such coordination,
collaborators must not only be aware of each other’s actions,
but they must also anticipate the actions of their partners
and proactively plan their own actions [1]. This anticipatory
planning is achieved by observing the behaviors of others,
anticipating future actions based on these observations, and
preparing one’s own actions according to anticipated actions [2],
[3]. Gaze behavior is a critical source of information about task
intent [4], a predictor of motor actions [5], [6], and a facilitator
in a range of important social functions from enabling shared
attention [7] to performing joint tasks [8].

Prior research in human-robot interaction has demonstrated
how monitoring user behaviors can help robots anticipate user
actions [9] and how anticipatory robot actions can enhance the
safety of the collaboration [10] and improve task efficiency
by reducing user idle time [11], [12]. These studies illustrate
the promise that anticipation and proactive actions hold for
improving human-robot collaboration. This paper explores a
specific mechanism for anticipatory action that enables a robot
to monitor the covert gaze patterns of its user, infer user task
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Fig. 1. We propose an “anticipatory control” method that enables robots to
proactively plan and execute actions based on an anticipation of a human
partner’s task intent as inferred from their gaze patterns.

intent based on these patterns, and engage in proactive task
actions in order to achieve a more seamless collaboration.

This work makes three specific contributions to research in
human-robot interaction: (1) an “anticipatory control” method
for robots to proactively plan and perform goal-directed actions
based on an anticipation of the task intent of a human
collaborator; (2) a system implementation of this method into
an autonomous robot that integrated real-time tracking of gaze,
prediction of task intent based on a trained model, and on-the-
fly planning of robot motions; and (3) data on the effects
of anticipatory robot action on human-robot collaboration
as well as insights into design and technical challenges
involved in realizing anticipatory control. These contributions
inform the development of robot systems for settings such as
manufacturing plants that require highly coordinated teamwork.

In the remainder of this paper, we first review prior work on
action observation and intent prediction as well as anticipatory
robot actions (Section II). We then present our anticipatory
control method and its implementation into an autonomous
robot system in Section III and describe the design of and
findings from a human-robot interaction study that evaluated the
system in Section IV. Finally, we conclude with a discussion
of the findings and limitations of our work (Section V).
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II. BACKGROUND

Collaboration requires that the parties involved employ a
set of cognitive and communicative mechanisms to coordinate
their actions toward a shared goal. Robots that are designed to
collaborate with people must similarly utilize these mechanisms
to coordinate their actions with their human counterparts. The
paragraphs below provide a brief review of research literature
on relevant cognitive and communicative mechanisms that
support human collaboration and of prior explorations of how
such mechanisms may facilitate human-robot teamwork.

A. Action Observation and Intent Prediction

A key facilitator of collaboration is action observation,
a process in which collaborators monitor the actions of
their partners in order to understand their goals and predict
what they will do next [3], [13]. In this process, individuals
map the observed actions of others onto their own motor
representation of the same actions [14], [15], which enables
them to proactively prepare their own goal-directed actions
[1]. Gaze serves as a particularly critical source of information
to signal task intent. Interaction partners expect that an area
being gazed toward in the task space is the next space to be
acted upon [4]. Awareness of partner’s gaze facilitates task
coordination [16] and improves efficiency in collaboration [17].

Relevant prior work on the relationship between gaze and
intent includes computational models that aim to predict task
intent from gaze cues. For example, the future actions of a driver
operating a motor vehicle can be predicted from the driver’s
gaze cues using sparse Bayesian learning [18]. Gaze can also
predict a performer’s task state while making a sandwich using
a dynamic Bayesian network [19]. In a collaborative sandwich-
making task, the requester’s task intent can be inferred from
their gaze patterns using an SVM-based classifier [20].

B. Anticipatory Robot Action

Prior research in human-robot interaction has explored how
robots may predict the intent and anticipate the actions of their
users in order to serve as effective collaborators. This work
includes the development of novel methods for goal inference
from observed human actions by mapping the observed actions
to a robot’s action repertoire [21] and by coupling these
observations with object affordances [9]. Researchers have also
proposed novel computational representations that enable robots
to anticipate collaborative actions in the presence of uncertainty
in sensing and ambiguity in task states, demonstrating robust
anticipation through an integration of all available sensor
information with a knowledge of the task [12].

Previous work also includes the development of several
robot systems that utilize anticipation of user actions to
improve human-robot collaboration. For instance, a robot
system designed to engage in co-located collaborations with
humans observed the motions of its human partners to predict
workspace occupancy and planned its motion accordingly in
order to minimize interference with them [10]. Another robot
system observed the reaching motion of its human counterparts,
predicted the intended reach target, and used this prediction to

selectively reach toward to a different target [22]. Anticipation
of actions enabled a virtual robot to adapt to its user’s workflow
in a simulated assembly scenario, improving the fluidity of
collaboration [11]. Finally, a robot system that was developed to
provide shoppers in a shopping mall with information was able
to approach shoppers effectively by anticipating their walking
behavior based on walking trajectories and velocities [23].

Additionally, prior work includes studies that link gaze and
task intent, including the development of a robot system that
predicted the intent of its users based on their motions and
used these predictions to determine where it should look in the
environment [24]. This linking not only directed the robot’s
attention toward the task-relevant parts of the environment but
it also signaled shared attention to human partners. Previous
research has also studied how people could utilize the gaze cues
of a robot to understand its intent and how this understanding
might facilitate efficient cooperation [25].

While research in human-robot interaction highlights the
promise of predicting user intent and performing anticipatory
actions for facilitating human-robot collaboration, how robots
may draw on the gaze patterns of their users to predict and
act according to user task intent and what specific effects
anticipatory robot actions may have on human-robot teamwork
remain unexplored. In the next section, we describe a novel
“anticipatory control” method that seeks to close this gap.

III. ENABLING ANTICIPATORY CONTROL

We propose an anticipatory control method that involves
monitoring user actions, predicting user task intent, and
proactively controlling robot actions according to predicted
user intent as an alternative to reactive control methods that
utilize direct, explicit user input. In this section, we present the
implementation of this method as a real-time autonomous robot
system following a sense-plan-act paradigm. To provide context
for the development and implementation of our proposed
method, we devised a task in which a robot works as a “server”
preparing smoothies for a human “customer” that represents
interactions common in day-to-day collaborations.

The proposed method integrated six components: (1) gaze
tracking, (2) speech recognition, (3) intent prediction, (4)
anticipatory motion planning, (5) speech synthesis, and (6)
robotic manipulation. Figure 2 illustrates how these components
are integrated by the implemented system, and the sections
below provide detail on their functioning and implementation.
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Fig. 2. Components of our anticipatory robot system.



A. Gaze Tracking

The gaze-tracking component captured gaze fixations from a
pair of SMI Eye-Tracking Glasses V.11 worn by the user. It then
performed a projective transformation using the Jacobi method
to map gaze fixations in the camera-view space to locations in
the physical task space. These points were subsequently used
to infer what task-relevant items were being looked toward.
The mapping between the camera-view space and physical
space and the association between locations in the physical
space and environmental items were realized by locating a set
of predefined Aruco markers.2

B. Speech Recognition & Synthesis

Microsoft Speech API 5.43 was used to build a speech-
recognition component to recognize user utterances and a
speech-synthesis component to realize the robot’s speech. A
flexible recognition grammar was specified to minimize speech
recognition errors and to accommodate different verbalizations
of user requests, such as “I would like to have mango,” “Could
I have papaya,” or simply “Peach.” The robot’s speech included
greetings, confirmations of user requests, such as “You ordered
mango,” task instructions, such as “Next one,” and a “Thank
you” remark uttered at the end of the interaction.

C. Robotic Manipulation

A six-degree-of-freedom Kinova MICO robot arm4 was used
as the manipulator to pick up the requested items and place
them at a target location, which in the context of our task
involved placing smoothie ingredients into a blender. The arm
was controlled using the MoveIt! platform5 and was given
a clear representation of the environment for motion planning.

D. Intent Prediction

The intent-prediction component built on our existing
framework for predicting user task intent based on gaze patterns
using a support vector machine (SVM) [20]. In the development
of this framework, we devised a collaborative sandwich-making
scenario in which a “server” added ingredients requested
by a “customer” and aimed to predict which ingredient the
customer would choose next based on his or her gaze patterns.
To train the SVM, we collected data from 276 episodes of
human interactions following this scenario and used four
features—number of glances, duration of the first glance, total
duration, and most recently glanced item—as predictors of
the intended ingredient. An offline cross-validation analysis
showed that the trained SVM predicted user intent based on
gaze patterns approximately 1.8 seconds prior to verbal requests
with reasonable accuracy (76%).

To create a real-time intent-prediction component, we used
the entire 276-episode dataset to train an SVM classifier that
predicted user task intent based on gaze features extracted

1http://www.eyetracking-glasses.com
2http://www.uco.es/investiga/grupos/ava/node/26
3https://msdn.microsoft.com/en-us/library/ee125077(v=vs.85).aspx
4http://www.kinovarobotics.com/service-robotics/products/robot-arms/
5http://moveit.ros.org

from the history of the items toward which the user has looked.
Using the four features described above as input, the classifier
provided the ID number of the ingredient that the system
predicted to be the item that the user would request next and
a score for the confidence of the classifier in its prediction.

E. Anticipatory Motion Planning

Using the MoveIt! platform, the anticipatory motion
planner utilized the prediction and confidence value that the
intent-prediction component provided to proactively plan and
execute motion toward the predicted item (Algorithm 1). If the
confidence of the prediction was higher than planThreshold,
set to 0.36, the motion planner planned a motion toward the
predicted item. If the confidence was higher than execThreshold,
set to 0.43, it executed only a part of the planned motion
based on its current confidence (see the description of the
splitPlan method below). Taken from our prior work [20],
these thresholds indicate that if the confidence of a prediction
is higher than 0.36, the prediction could be correct, and that if
it exceeds 0.43, the prediction was unlikely to be incorrect.

Instead of using the current prediction and confidence,
denoted, respectively, as currPred and currProb, directly
from the intent-prediction component, the anticipatory motion
planner maintained a history of the 15 latest predictions,
including the current prediction. The gaze-tracking component
provided readings at approximately 30 Hz, and thus the length
of the prediction history was chosen to be approximately 500
milliseconds. The prediction history was then used to calculate
a weighted prediction, p′i , that discounted past predictions using
the exponential decay function defined in Equation 1.

p′i = pi × (1 – decayRate)i (1)

In this function, pi denotes the probability of the ith
prediction in the history. The decayRate, set to 0.25, indicates
the rate at which the weight of the prediction decayed, and the
resulting prediction (weightedPred, i.e., p′

i) is the prediction
with the highest weight summed over the prediction history.

The anticipatory motion planner maintained a plan library
that stored a set of candidate motion plans from which

Algorithm 1 Anticipatory Robot Control
Require: currPred, currProb
1: while true do
2: predHistory ← UPDATEPREDHISTORY(currPred, currProb)
3: weightedPred, weightedProb ← GETWEIGHTEDPRED(predHistory)
4: if weightedProb ≥ planThreshold then
5: motionPlan ← RETRIEVEPLAN(weightedPred)
6: if (motionPlan = ∅) or (weightedPred 6= currMotionTarget) then
7: MAKEPLAN(weightedPred)
8: end if
9: end if

10: if weightedProb ≥ execThreshold then
11: motionPlan ← RETRIEVEPLAN( )
12: subPlan1, subPlan2 ← SPLITPLAN(motionPlan)
13: REQUESTEXEC(subPlan1)
14: UPDATEPLANLIBRARY(weightedPred, subPlan2)
15: end if
16: end while

http://www.eyetracking-glasses.com
http://www.uco.es/investiga/grupos/ava/node/26
https://msdn.microsoft.com/en-us/library/ee125077(v=vs.85).aspx
http://www.kinovarobotics.com/service-robotics/products/robot-arms/
http://moveit.ros.org


it chose when the robot had made a prediction of the
user’s request. The currMotionTarget variable denotes the
motion target associated with the most recent plan. The
makePlan function utilized the RRT-Connect algorithm [26]
(the RRTConnectkConfigDefault planner in MoveIt!)
to create a motion plan toward the weightedPred item. The
splitPlan function took a motion plan and split it into two
sequential sub-plans proportionally based on the confidence of
the prediction, denoted as weightedProb. Higher confidence
values moved the robot closer and closer to the predicted item.
Although this iterative planning could bring the robot to a
position in which it could grasp the ingredient, we chose to
delay the grasp until the user made a verbal request in order
to more easily recover from errors.

The implementation of the anticipatory-motion-planning
component involved three threads: a planning thread that imple-
mented Algorithm 1, an execution thread that executed motion
plans, and a speech thread that processed user requests. The
planning thread put a motion request into a plan queue using the
requestExec function. The execution thread regularly checked
the queue of plans and executed them. When processing a
verbal request, the speech thread checked if the robot’s current
motion target—if it had one—matched the user’s request. If
it did, the robot carried out the rest of the motion plan in
order to complete the request. Otherwise, it stopped the current
motion and made a new plan, directing motion toward the item
requested by the user. We note that anticipatory control was
used for determining and reaching toward requested items and
not for transporting grasped items to the target location.

F. System Limitations

Our anticipatory robot system had three main sources of
error: tracking, projection, and prediction. Tracking errors
resulted directly from the eye-tracking system. Even with a
state-of-the-art eye-tracking system that was calibrated for
each user following the manufacturer-recommended calibration
procedure, some amount of tracking error was unavoidable. A
second source of error arose from the projection process of
gaze fixations provided by the eye tracker to the workspace.
Mismatched tracking rates between the eye tracker and the
tracker used for Aruco markers led to incorrect inferences
regarding which items were gaze targets. Finally, the intent-
prediction component provided erroneous predictions partly
due to errors that cascaded through the tracking and projection
processes and partly due to the limitations of the trained model.

IV. EVALUATION

In this section, we describe the design of and findings
from a human-robot interaction experiment that evaluated the
effectiveness of the proposed anticipatory control method in
supporting team performance and user experience.

A. Hypothesis

Our central hypothesis is that anticipatory control, as
implemented in the robot system described in Section III,
would enable the robot to more effectively respond to user

Fig. 3. The setup of the human-robot interaction experiment. Between the
robot and the user were a menu for the user from which to select ingredients
and a workspace for the robot to prepare the order.

requests, thus resulting in improvements in team performance
and user perceptions of the robot, compared to other, more
reactive forms of control.

B. Experimental Task, Design, & Conditions

To test our hypothesis, we devised an experimental task in
which human participants, acting as “customers,” ordered two
fruit smoothies from a robot system that served as a “café
worker.” During the task, participants sat across from the robot
with a menu of 12 different fruit choices placed in front of
them (Figure 3). Participants were asked to choose a total of
five fruits from the menu for each order and to request one
fruit at a time using verbal requests.

Two experimental conditions—anticipatory and reactive—
were implemented on the robot system for evaluation. In the
anticipatory condition, the robot predicted the user’s choices
and proactively planned and executed its motions based on its
prediction, as described in Section III. In the reactive condition,
the robot responded only to the user’s verbal requests.

The experiment followed a within-participants design. The
only independent variable was whether or not the robot
anticipated user choices before acting on them. Each participant
interacted with the robot in both conditions, and the order of
conditions was counterbalanced across trials. We designed the
experimental task to involve practices people commonly follow
in daily interactions that one would expect at a café in order to
minimize learning effects and the need for extensive training.

C. Procedure

Upon receiving informed consent, the experimenter provided
the participant with an explanation of the task and described
how they could interact with the robot. The participant was
fitted with head-worn eye-tracking glasses. The experimenter
then performed a calibration procedure for eye tracking
followed by a verification procedure for gaze projection. In this
verification procedure, the experimenter asked the participant
to look toward four different ingredients on the menu, one
at a time, and to name the ingredient toward which they
were looking in order to determine the accuracy of the gaze



projection after the eye tracker was calibrated. The participant
then followed the robot’s instructions to complete a drink order
and filled out a questionnaire to evaluate their experience with
and perceptions of the robot. This procedure was then repeated
for the other condition. After interacting with the robot in both
conditions, the experimenter collected demographic information
and interviewed the participants for additional comments on
differences they may have observed in the robot’s behaviors
between the two conditions.

D. Measures

We expected the performance of the anticipatory robot
system to be affected by the potential errors accumulated
throughout the pipeline of tracking the participant’s eyes,
inferring gaze targets, and predicting participant intent. To gain
a more detailed understanding of the effects of these errors
on team performance, we employed two system measures:
projection accuracy and prediction accuracy.

Projection accuracy (%): The number of matches between
gazed and reported items divided by the total number of items
(i.e., four per participant), measured during the gaze-projection-
verification procedure.

Prediction accuracy (%): The number of matches between
system predictions and user requests divided by the total
number of user requests (i.e., five per interaction episode),
measured during the experimental task.

To assess the effectiveness of anticipatory and reactive
control methods in supporting human-robot collaboration,
we utilized a number of objective and subjective measures.
Objective measures included response time and time to grasp.

Response time (milliseconds): The duration between when
the participant verbally placed a request and when the robot
started moving toward the requested item. For the anticipatory
system, this measure captured the time it took to initiate a
planned motion if the robot’s prediction matched the user’s
request. Otherwise, it additionally captured the time needed
to stop the current motion toward an incorrect prediction and
the time to plan and initiate motion toward the correct target.
For the reactive system, the measure only captured the time
needed to plan and initiate motion toward the requested item
as soon as the request was recognized.

Time to grasp (seconds): The duration between when the
participant verbally requested an item to when the robot grasped
the requested item. This measure was also considered as an
approximation of task time, as the procedure to transport the
grasped item to the target location to complete user requests
was the same for both conditions.

In addition to the objective measures described above,
we used a questionnaire to assess participants’ subjective
perceptions of the robot’s anticipatory behaviors, particularly its
perceived awareness and intentionality. The awareness scale,
consisting of four items (Cronbach’s α = 0.74), aimed to
measure how aware participants thought the robot was of
their intended choices. The intentionality scale, consisting
of four items (Cronbach’s α = 0.83), aimed to capture

participant perceptions of how mindful, conscious, intentional,
and intelligent the robot appeared.

Finally, a single item, “The robot only moved to pick up an
item after I verbally issued a request,” served as a manipulation
check, examining whether or not users were able to discern
the difference between the anticipatory and reactive systems.

E. Participants

Twenty-six participants were recruited from the local com-
munity. Two participants were excluded from the data analysis
due to failures in eye tracking or in online motion planning.
The resulting 24 participants (16 females, 8 males) were aged
between 18 and 32 (M = 22.21, SD = 4.15). Four participants
reported having interacted with a similar robot arm prior to
their participation in the current study. The study took 30
minutes, and participants were paid $5 USD.

F. Results

The paragraphs below report on results from our system,
objective, and subjective measures. We describe findings from
the system measures first in order to provide context for the
objective and subjective measures, as they were affected by the
potential errors accumulated through the eye-tracking, gaze-
projection, and intent-prediction phases.

System measures — The overall projection accuracy for our
anticipatory system was 81.25%. Incorrectly inferred items
were usually immediate neighbors (i.e., above, below, to the
left, and to the right) of the intended targets. This accuracy
rose to 91.67% if neighbors were considered as correct.

Out of 120 predictions, the anticipatory system made 53
incorrect predictions, yielding 55.83% prediction accuracy.
However, eight of these incorrect predictions were due to not
being able to make any prediction, because the users did not
look toward any items on the menu prior to making requests.
Additionally, in another 18 trials, participants did not look
toward the requested item but rather looked toward other items,
resulting in incorrect predictions. Possible explanations for
these behaviors are that participants decided on their next
ingredient during the previous request, that the eye tracker failed
to accurately capture gaze direction, or that gaze projection
was erroneous. Our system reached 59.82% prediction accuracy
in cases where a prediction was made and 77.5% accuracy if
the user had glanced at the intended item. Baseline accuracy
(chance) varied between 8.33% (1/12) and 12.5% (1/8).

To analyze the data from the objective and subjective
measures, we used one-way repeated-measures analysis of
variance (ANOVA) following a linear mixed-models procedure
in which control method, either anticipatory or reactive, was
set as a fixed effect, and participant was set as a random effect,
as suggested by Seltman [27]. Table I, Table II, and Figure 4
summarize results from this analysis.

Manipulation check — We found significant differences in
participant perceptions of when the robot moved toward the
requested item across the two conditions (Table II), indicating
that participants were able to discern the differences resulting
from our experimental manipulation.
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Objective measures — Table I, Table II, and Figure 4 provide
results from our objective measures, including response time
and time to grasp. We found that anticipatory control enabled
the robot to more efficiently respond to and complete participant
requests than did reactive control. The average duration for
finding and initializing a valid motion plan toward the target
item, which corresponded to the response time of the reactive
system, was 482.71 ms, indicating a reasonably responsive
system in the context of our task. Anticipatory control based
on predicted participant intent reduced the response time by
226.3 ms. If the predictions were correct, the response time
on average for the anticipatory system was 51.03 ms.

The anticipatory system proactively moved toward the
predicted item of choice based on its confidence in the
prediction. This proactive execution reduced time to grasp
by 2.51 seconds. When predictions were correct (55.83%
of the time), the anticipatory system would have partially
completed its movement toward the requested item by the
time it received the participant’s verbal request, resulting in
a 3.4-second advantage. When predictions were incorrect but
involved items neighboring the requested item (78.33% of
the time), anticipatory control still benefited time to grasp (3-
second advantage), as the system would have moved toward the
vicinity of the correct item, providing it with a time advantage
in moving toward the correct item. We note again that time to
grasp is an approximation of task time.

TABLE I
DESCRIPTIVE STATISTICS OF OBJECTIVE MEASURES FROM THE

ANTICIPATORY CONTROL CONDITION BROKEN DOWN INTO CORRECT AND
INCORRECT PREDICTIONS AS WELL AS NEIGHBORING-ITEM PREDICTIONS

THAT ARE CONSIDERED CORRECT AND INCORRECT.

Response time (ms) Time to grasp (s)Control method Prediction

Incorrect

Reactive

516.04 (SD=527.35)

482.71(SD=551.33)

7.41 (SD=1.74)

8.80 (SD=1.26)

Anticipatory
Correct 51.03 (SD=195.64) 5.40 (SD=1.72)

All 256.41 (SD=443.31) 6.29 (SD=1.99)

Neighboring, Incorrect 587.97 (SD=673.68) 8.06 (SD=1.40)
Neighboring, Correct 164.70 (SD=300.38) 5.80 (SD=1.85)

We also found that the ability to correctly predict user
intent was strongly associated with improvements in the two
objective measures that resulted from the use of anticipatory
control. Correlation analyses using Pearson’s product-moment
method showed that prediction accuracy was strongly correlated
with response time, r(118) = –0.52, p < .001, and time
to grasp, r(118) = –0.50, p < .001. This interdependence
between prediction accuracy and objective measures highlight
the importance of correctly predicting user intent for achieving
efficient human-robot collaboration.

Subjective measures — Table II and Figure 4 summarize the
results from our subjective measures, particularly the perceived
awareness and intentionality of the robot. Participants rated
the anticipatory system to be significantly more aware of
their intended choices than the reactive system. However,
no significant differences were found in how intentional
participants found the two robot systems to be.

Post-experiment interview — In the post-experiment inter-
view, we asked participants open-ended questions about their
perceptions of how the two systems behaved in preparing their
orders. Several participants described the proactive behavior

TABLE II
STATISTICAL TEST RESULTS FOR THE MANIPULATION CHECK, OBJECTIVE

MEASURES, AND SUBJECTIVE MEASURES

Control method

Control method

Anticipatory
Reactive

Anticipatory
Reactive

Response time (ms)

Objective Measures

Subjective Measures

Time to grasp (s)

256.41 (SD=443.31)
482.71 (SD=551.33)

6.29 (SD=1.99)
8.80 (SD=1.26)

F(1,46)=12.96, p<.001
95% CI [49.77, 175.99]
d=0.452

F(1,46)=147.88, p<.001
95% CI [1.05, 1.47]
d=1.507

Manipulation check

4.13 (SD=2.31)
6.79 (SD=0.41)

F(1,46)=31.01, p<.001
95% CI [-1.82, -0.85]
d=1.603

Awareness Intentionality

5.09 (SD=1.29)
3.91 (SD=1.56)

4.66 (SD=1.58)
4.54 (SD=1.73)

F(1,46)=8.24, p=.006
95% CI [0.18, 1.01]
d=0.824

F(1,46)=0.06, p=.812
95% CI [-0.43, 0.54]
d=0.072



of the anticipatory robot as being efficient, which was in line
with the findings from our response time and time to grasp
measures, as illustrated in the excerpts below:

P3: “[The anticipatory robot] seemed like it’s moving
toward what I was going to order, so I thought it knew... I
guess that would be more time efficient if it already knew.”

P4: “[The anticipatory robot] just moved the arm closer
to the fruit before I said something and so it was faster...
it was preparatory... it was being more efficient.”

P5: “[The anticipatory robot] was going for, I guess,
what my eyes were looking towards before I even made a
decision.”

Eight participants explicitly mentioned that they preferred
the anticipatory system over the reactive one because of the
perceived efficiency and proactivity of the robot. On the
other hand, two participants preferred the reactive system,
one participant describing the robot’s anticipatory actions as
“freaky” and reporting feeling “unnerved” and “bothered:”

P1: “I could tell [the anticipatory robot] was watching my
gaze or aware of my gaze... It has awareness... and that
almost felt kind of freaky... that it almost could guess what
I wanted... I didn’t like it as much.”

The other participant who preferred the reactive system over
the anticipatory one cited an instance of the anticipatory robot
making a wrong prediction and moving toward the opposite
direction as the primary basis of this preference:

P8: “[The anticipatory robot] shouldn’t move before I said
what I wanted... so I guess that’s [its] fault...”

V. DISCUSSION

In this paper, we present a novel “anticipatory control”
method that enables a robot system to monitor its user’s gaze
patterns to predict their task intent and perform anticipatory
actions based on these predictions in human-robot collaboration
scenarios. We implemented this method as a robot system that
integrated an arm manipulator, eye tracker, dialogue manager,
and a trained intent-prediction component. A human-robot
interaction study demonstrated that our method improves the
effectiveness of the robot in responding to user requests—
resulting in shorter response and task times—and user per-
ceptions of the awareness of the robot of its user. Below, we
discuss the design and research implications of the findings
from our study and the limitations of the presented work.

A. Anticipatory action for efficient teamwork

Our evaluation demonstrated that the anticipatory system,
compared to the reactive system, provided on average a 2.5-
second advantage in reaching toward the correct item and
completing the task. This advantage resulted from our proposed
method for intention prediction and proactive motion planning
and execution. While the reactive control method enabled the
robot to respond to user requests in less than 500 milliseconds,
the anticipatory control method further reduced task times
and improved user perceptions, as demonstrated by data from
subjective measures as well as open-ended interviews. We

expect these improvements to significantly benefit human-robot
teams, resulting in more efficient and fluent teamwork, and
have a compounding positive effect in repeated interactions,
such as assembly work in manufacturing.

B. Intention prediction in practice

Several practical issues arose in realizing intention prediction
in a real-time interactive robot system. First, inferring what
items participants were looking toward during interactions
involved inherent uncertainties. In order to alleviate some of
this uncertainty and accurately link gaze fixations to items,
we utilized projective transformation between the task space
captured by the eye tracker and real-world task space. The
findings from the evaluation showed that our implementation
incorrectly inferred gaze targets 18.75% of the time, which
subsequently affected intent prediction and the anticipatory
execution of actions. While we expect future implementations
to achieve higher levels of accuracy and better reasoning
regarding uncertain observations, prior studies of human-human
(e.g., [28]) and human-robot (e.g., [29], [30]) interactions have
reported a constant error rate in observers’ ability to accurately
determine the gaze targets of humans or robots. Future work
must explore how such error can be alleviated, for example,
by integrating information about the sequence of gaze patterns
as well as domain knowledge to help determine priors on what
items are likely to be gaze targets.

Further, we modeled the collaboration as a sequence of
episodic exchanges (e.g., one for each requested ingredient)
and predicted user intent in each exchange independent of prior
exchanges or likely future exchanges. While this assumption
simplifies the modeling problem and the required solutions, it
underutilizes information that could benefit predictions of user
intent, as actions taken across different episodes are likely to
be highly interdependent and linked to an overarching plan.
Our evaluation showed that among 53 incorrect predictions,
eight instances did not involve any identifiable gaze targets
and another 18 instances involved participants looking toward
alternative items. These observations highlight violations of our
independence assumption and suggest a more complex process
of choosing and communicating items that our model did not
capture. To overcome this limitation, future work must build
more detailed models of decision making and communication
in collaborative interactions.

Although our anticipatory system imperfectly predicted user
intent, many of the errors directed the robot toward items that
neighbored the correct gaze target (i.e., immediately above,
below, to the left, or to the right), and the robot could re-plan
when the correct gaze target was determined with minimal delay.
Therefore, even many of the erroneous predictions helped the
robot more efficiently respond to user requests.

C. Other Limitations

In addition to the discussion provided above and the system
limitations described in Section III-F, this work has a number
of limitations that motivate future research. First, as in most
data-driven machine learning approaches that are attuned to



training data, the performance and the generalizability of our
SVM-based intent-prediction component are constrained by
the training data used and the specific flow and context of
the interaction from which the data were collected. Further
research is needed to achieve robust prediction algorithms
that are generalizable to a wide range of contexts. Second,
while participants perceived the anticipatory robot system as
being more aware of their actions and intents, we see many
possibilities for how the robot can better communicate its
awareness to its user, for instance, by displaying “legible”
motion [31], that we did not explore in this work. Other
potential solutions include the robot changing its movement
velocity based on the confidence of its predictions or, when
confidence is low, moving toward a location that is more
optimal for re-planning rather than moving toward an incorrect
target. Finally, future work may draw on other user behaviors,
such as facial expressions, gestures, and linguistic cues, to
achieve more accurate and robust prediction of user intent.

VI. CONCLUSION

To achieve fluid, efficient collaboration, robots need to under-
stand and anticipate their human partners’ intentions and to act
accordingly. In this paper, we proposed an anticipatory control
method that allows robots to proactively prepare and execute
actions toward a shared goal based on anticipation of their
human partners’ intentions. We developed an autonomous robot
system that implemented anticipatory control to engage users
in a collaborative task. The system monitored the users’ gaze,
predicted their task intent, and acted proactively in response
to the predicted intent. We demonstrated the effectiveness of
the anticipatory control method and the implemented robot
system in contributing to efficient teamwork and positive user
experience in human-robot collaboration. This work highlights
the promise that anticipatory control holds for realizing fluent
and efficient human-robot teamwork in day-to-day settings.
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