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ABSTRACT

Social interaction involves a large number of patterned behaviors
that people employ to achieve particular communicative goals. To
achieve fluent and effective humanlike communication, robots must
seamlessly integrate the necessary social behaviors for a given in-
teraction context. However, very little is known about how robots
might be equipped with a collection of such behaviors and how they
might employ these behaviors in social interaction. In this paper,
we propose a framework that guides the generation of social behav-
ior for humanlike robots by systematically using specifications of
social behavior from the social-sciences and contextualizing these
specifications in an Activity-Theory-based interaction model. We
present the Robot Behavior Toolkit, an open-source implementation
of this framework as a Robot Operating System (ROS) module and
a community-based repository for behavioral specifications, and an
evaluation of the effectiveness of the Toolkit in using these speci-
fications to generate social behavior in a human-robot interaction
study, focusing particularly on gaze behavior. The results show
that specifications from this knowledge base enabled the Toolkit to
achieve positive social, cognitive, and task outcomes, such as im-
proved information recall, collaborative work, and perceptions of
the robot.

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine Systems — human
factors, software psychology; H.5.2 [Information Interfaces and
Presentation]: User Interfaces — evaluation/methodology, user-
centered design; 1.2.0 [Artificial Intelligence]: General — Cogni-
tive Simulation
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Figure 1: Our framework that integrates (1) social-scientific specifications
of human social behavior and (2) an interaction model inspired by Activity
Theory to guide the generation of humanlike behavior for robots.

1. INTRODUCTION

Participants in human interactions routinely coordinate a set of
social behaviors that support joint activities toward achieving so-
cial, cognitive, and task outcomes. For instance, teachers and stu-
dents in the classroom employ social behaviors that support their
teaching and learning goals. Public speakers display social be-
haviors that support their goals of effective communication, atten-
tion, and persuasion. Surgeons and their teams in operation rooms
use social behaviors to communicate and coordinate their activities
to improve the effectiveness of their work. Robots—as effective
teachers, storytellers, and collaborators—must also employ a rich
set of social behaviors to support their users’ activities and goals.

Several studies in human-robot interaction, including our own
work (e.g., [19, 21]), have modeled key social behaviors, imple-
mented these behaviors on robots, and evaluated their effectiveness
in supporting human activity (e.g., [4, 13, 25, 32]). These stud-
ies demonstrate the necessity of robots displaying appropriate so-
cial behaviors to effectively achieve social, cognitive, and task out-
comes in human-robot interaction. In this paper, we seek further
the study of appropriate social behavior for robots and explore the
following research questions: How do we generate such behaviors
systematically? How can we ensure that these generated behaviors
support human activity? Can such behaviors reliably generate the
intended social, cognitive, and task outcomes?

To answer these questions, we propose a framework that contex-
tualizes an expandable knowledge base of social-scientific findings
on human social behavior in an interaction model that facilitates
human interaction based on Activity Theory [22] (see Figure 1).
In this paper, we present an implementation of this framework, the
Robot Behavior Toolkit', and an evaluation of the effectiveness of

'"The open-source toolkit and its documentation can be accessed at
http://hci.cs.wisc.edu/projects/rbt.



the social behaviors it generates for humanlike robots. The Toolkit
offers a community-based repository for social-scientific findings,
open to HRI researchers to use and to build on, and an open-source
Robot Operating System (ROS) [24] module that integrates the be-
havioral specifications provided by these findings into an interac-
tion model that supports human activity. The evaluation validates
that the behaviors generated by our Toolkit based on a small, ex-
perimental set of behavioral specifications indeed creates improved
social, cognitive, and task outcomes as predicted by literature on
human-human interaction.

This work provides the following contributions. First, we present
a system that offers a community knowledge base of social-scientific
specifications for generating social behavior and an open-source
ROS module for an interaction model that contextualizes behavioral
specifications in human activity. Second, our evaluation, which fo-
cuses on gaze behavior, validates the effectiveness of the system
in generating social behaviors that evoke key social, cognitive, and
task outcomes. The evaluation also creates new knowledge on the
specific outcomes that robots can generate using the subset of be-
havioral specifications explored in this work.

The next section provides background on approaches to generat-
ing robot behavior, on models of human activity and social interac-
tion, and on related work from human-robot interaction on gener-
ating humanlike behavior in robots.

2. BACKGROUND

Approaches to Designing Robot Behaviors

Researchers and designers have developed and followed several
approaches to designing interactive behaviors for embodied agents
and robots, most notable of which follow principles of drama and
film animatronics, animation techniques, and models of human so-
cial behavior. An example of the first approach is a puppeteering
system that Hoffman et al. developed based on acting theory to
support robotic live stage performers [11]. Similarly, Bruce et al.
used lessons from dramatic acting to create believable behaviors for
robots [6]. Researchers have also explored how animation princi-
ples might guide the design of interactive behaviors for humanlike
robots [28] and robotic characters [31] and found that robots that
employ principles such as anticipation and follow-through [29] are
perceived to be more readable, appealing, approachable, and capa-
ble [28].

An example of using models of human behavior to design robot
behavior is a software architecture developed by Breazeal and Scas-
sellati [5], which generated facial expressions and behavioral re-
sponses to external stimuli that resembled infant-caregiver inter-
action. Another example is the BEAT system, which it generates
appropriate gaze behaviors, gestures, and facial and prosodic ex-
pressions for animated agents based on models of human behavior
[7]. Our previous work also explored how models of human gaze
might guide the design of conversational gaze mechanisms for hu-
manlike robots and showed that these mechanisms enable robots
to establish appropriate conversational roles and rapport with their
human partners [20, 21]. Finally, Holroyd et al. developed a Robot
Operating System (ROS) module that generates a set of nonver-
bal behaviors to support engagement between a human and a robot
based on observational studies of human engagement [13].

While all of these approaches to designing robot behavior have
merit, we believe that human social behavior might serve as a rich
resource for specifying robot behavior and a gold standard against
which designs can be compared. Therefore, our approach draws
on a collection of specifications of human behavior from research
on human-human interaction to systematically generate robot be-
havior and to assess the extent to which these specifications enable

robots to achieve communicative goals that humans achieve in so-
cial interaction.

Interaction Models

Research in psychology and human-computer interaction have
proposed several paradigms to model human-human interaction and
activities. The approaches that are most relevant to our work are
Activity Theory, situated action models, and distributed cognition.
Activity Theory, which serves as the basis for our work, offers a
theoretical framework to understand human activity as a complex,
socially situated phenomena and a set of principles that guide this
understanding (see Leont’ev [17] and Nardi [23] for reviews of Ac-
tivity Theory). Here we provide brief descriptions of each principle
and how they inform the design of the interaction framework for
our toolkit. More detail on the design of our system is provided in
the next section.

The first principle, consciousness unifies attention, intention, mem-
ory, reasoning, and speech [30] toward understanding an activity.
This principle informs the overall design of our toolkit; the con-
cepts of attention and intention are captured in the context model
and the activity model. Speech is considered an inseparable be-
havioral channel from and is synchronized with other behavioral
channels. Working memory and long-term memory are used in the
Toolkit to facilitate cognitive processes. The second principle is
object-orientedness, which specifies that objects around which the
activity is centered are “shared for manipulation and transformation
by the participants of the activity” [15]. We represent this concept
as motives in our activity model. The third principle of Activity
Theory is the hierarchical structure of activity, which organizes ac-
tivity into three levels: activity, action, and operation. Each level
corresponds to a motive, goal, and conditions, respectively. An
activity consists of a series of actions that share the same motive.
Each action has a defined goal and a chain of operations that are
regular routines performed under a set of conditions provided by
the environment and the actions. We represent this hierarchy in our
activity model.

The fourth principle of Activity Theory is internalization and
externalization. Internalization is the process of transforming ex-
ternal actions or perceptions into mental processes, whereas ex-
ternalization is the process of manifesting mental processes in ex-
ternal actions. Internalization and externalization are analogies to
the processes of forming a context model and of generating out-
put behavior, respectively. The fifth principle of Activity Theory is
mediation. Activities are mediated by several external and internal
tools such as physical artifacts that might be used in an activity and
cultural knowledge or social experience that individual might have
acquired. For instance, the knowledge base of behavioral specifica-
tions in our Toolkit serves as an internal tool that mediates activities
between humans and robots.

Situated action models and distributed cognition propose alter-
native accounts of human activity. Situated action models posit
that the nature of human activity and interaction is improvisatory
and contingent and do not highlight concepts of motivation, goal,
and consciousness in human activity [16]. Distributed cognition
emphasizes the coordination among humans and artifacts toward
achieving an overall system goal [12] and considers humans and
artifacts as conceptually equivalent, both as agents in a cognitive
system. This treatment challenges the role of artifacts as mediators
in shaping human activity and behavior.

Among these frameworks, we find Activity Theory to offer the
richest representation for interaction between humans and robots,
because (1) its emphasis on mediation allows us to focus on the
notion of context in human-robot interaction, (2) it decomposes ac-
tivities into manageable layers for a robot to interpret and execute,
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Figure 2: The Robot Behavior Toolkit consists of three subsystems—the
perceptual, cognitive, and behavior systems; two memories—the working
memory and long term memory; and supporting components—the activity
model and knowledge base.

and (3) the notion of object-orientedness offers an essential repre-
sentation for human-robot collaborative work. Therefore, we adopt
Activity Theory as the theoretical basis for the design of our toolkit.
A detailed comparison of the three approaches discussed here can
be found in Nardi [23].

In this paper, we seek to couple two powerful concepts—using
specifications of human social behavior as a resource for generat-
ing robot behavior and drawing on principles of Activity Theory to
construct an activity model for human-robot interaction—toward
achieving robots that systematically use social behavior to achieve
positive social, cognitive, and task outcomes in human-robot inter-
action.

3. ROBOT BEHAVIOR TOOLKIT

Robot Behavior Toolkit is an implementation of our proposed
framework —using social-scientific findings contextualized in an
Activity-Theory-based interaction model to guide the generation of
humanlike behavior for robots. The Toolkit is developed to be ex-
tensible and flexible to be used with a wide range of sensor devices
and robotic platforms. To this end, we integrated the Toolkit with
the ROS infrastructure. The Toolkit is written in Python and adopts
XML as the main format for information sharing and storage within
the Toolkit.

The Toolkit consists of three main subsystems and two memo-
ries (see Figure 2 for an illustration of the system architecture). The
perceptual system takes sensor data as input and preprocesses it to
an internal structure for later processing. The cognitive system uses
the external information from the perceptual system and internal
information from the activity model to form a context model of the
current situation. The behavior system uses the context model to
guide behavior formation based on behavioral specifications from
the knowledge base. The output of the Toolkit is high-level behav-
iors defined in an XML format for the robot to execute. The follow-
ing paragraphs provide more detailed descriptions of these system
components. More detail on the Toolkit and its implementation is
available on our project website: http://hci.cs.wisc.edu/projects/rbt.

Perceptual System

The perceptual system fuses sensor data from various sensor de-
vices and transforms it into an internal data structure for the other
toolkit components to use. In the current design, the perceptual
system requires sensor data in an XML format. Each kind of sen-
sor data (e.g., vision, audio, etc.) has its own XML specification
(see our project page for details). This requirement helps standard-

ize the information sharing between various sensor devices and our
toolkit. Our design allows different sensor devices to send data to
the perceptual system at different rates.

Memories

Informed by psychology research on memory [2, 3], two types of
memory are used in our toolkit. The working memory stores data
that is currently of interest to the subsystems. Conceptually, the
working memory is a place where a subsystem stores information
that other subsystems need for processing. For example, the cogni-
tive system might store a context model of the current situation for
the behavior system to access in order to generate the appropriate
behavior output for the situation. If a concept or fact is repeatedly
reinforced in the working memory, it is stored as ‘knowledge’ in
the long-term memory. Information stored in the long-term mem-
ory has the potential to influence the cognitive system in context
formation. This setup is analogous to the concept of mediation of
internal tools (e.g., cultural knowledge and social experience) in
Activity Theory.

Activity Model

An activity model, structured in XML format, specifies the ac-
tivity that a robot wants to initiate. Figure 3 provides the represen-
tation for an example activity model. For each activity, a motive
governs actions. Each action, by achieving its corresponding goal,
helps to fulfill the motive of the activity. Each action may have sev-
eral operations that are constrained by a set of conditions and that
can be executed only when all the conditions are met. Actions have
predefined outcomes such as ‘task’ and ‘rapport’ that are used in
the process of coordinating generated behaviors (see Behavior Sys-
tem). Outcomes specify the orientation of an action. For instance,
a task outcome indicates that the action is task-oriented.

In the example in Figure 3, the robot has a motive to clear the
objects on a table. To fulfill the motive, the robot performs an action
with the goal of removing the objects and, in this case, instructs the
user to clear the table by moving the objects to boxes. The robot
needs to ensure that ‘user, ‘object, and ‘box’ are present before
performing the operation (i.e., giving the instruction).

Cognitive System

The cognitive system takes external and internal information and
generates a set of triggers that form a context model of the cur-
rent situation. This system consists of three main components:
the world manager, activity manager, and context generator. The
world manager keeps track of current environmental information
(e.g., what objects are in the field of view of the robot and where

<Activity id="1">
<Motive>clear(table)</Motive>
<Description>Clear objects on table</Description>
<Participants>Self, User1</Participants>
<Action id="1">
<Outcome>Task</Outcome>
<Goal>disappear(object)</Goal>
<Description>
Instruct Userl to categorize object
</Description>
<Operation type="utterance >
<Condition>present(Userl)</Condition>
<Condition>
known(the blue object with two pegs)
</Condition>
<Condition> known(the blue box)</Condition>
<Info turn="end"'>
Could you help me put the blue object with
two pegs into the blue box, please?
</Info>
</Operation>

Figure 3: An example activity model in which the robot instructs a human
partner to clear objects on a table.



<rules>
<ruleid="1">
<editor>editor_1</editor>
<edit_time>timestamp_1</edit_time>
<references>reference_id</references>
<description>
The referential gaze typically precedes the onset of corresponding
linguistic reference by approimate 800 msec to 1000 msec.
</description>
<behavior_type>gaze</behavior_type>
<trigger>linguistic_reference</trigger>
<behavior>
precede(toward(gaze, artifact), linguistic_reference, rand(800,
1000))
</behavior>
<outcomes>task</outcomes>
</rule>

Figure 4: An example behavioral specification on synchronizing referential
cues in speech and gaze.

they are) using data from the perceptual system. This management
provides a high-level abstraction for all processes in the Toolkit.
The behavior system operates at an abstract level and does not have
concrete details such as where an object might be located. Behav-
ior realizers, processes that interpret behaviors generated by the
Toolkit (see Integration with ROS), can query specific locations
from the world manager when it is ready to execute the behav-
iors. Another advantage of this abstraction is providing accurate
information about the external world, such as the most up-to-date
information on the location of an object of interest that might be
moved during processing.

The activity manager controls the flow of self-initiated activity
specified in the activity model and examines whether the conditions
are met for an operation to be executed and whether a goal is met
so that it can proceed to the next action. Actions are organized in a
queue structure in the order specified by the activity model. How-
ever, it is also possible to insert a new action in the queue when an
unexpected event occurs, such as responding to spontaneous user
input. If all operations under an action are executed, but the goal is
not met, all operations will be re-executed. When the action queue
is empty, the activity manager seeks to verify whether or not the
motive of the activity is fulfilled.

The context generator uses internal (i.e., from the activity man-
ager) and external (i.e., from the world manager) information to
derive corresponding internal and external triggers, which together
form the context model of the current situation. This model is rep-
resented in XML format and later used to guide the generation of
robot behavior.

Knowledge Base

The knowledge base stores a collection of behavioral specifica-
tions from the social-scientific literature on human social behavior.
The main purpose of using such a repository is to collectively orga-
nize relevant findings and to systematically apply these findings to-
ward generating robot behaviors. Behavioral specifications are de-
fined in XML format, as shown in Figure 4. Each specification has
a references tag that can associate the specification with the source
from which the specification is derived. Each specification may
have multiple rriggers that activate the specified behaviors. Con-
ceptually, the context model from the cognitive system provides
triggers used to retrieve behavioral specifications to generate robot
behaviors. behaviors are described in a machine-readable function
format. In the example illustrated in Figure 4, three arguments are
provided for the precede function. The first argument precedes the
second argument and the third argument tells the system how far
ahead the first argument should precede the second argument. In
this case, the action of gazing toward the artifact precedes corre-
sponding linguistic reference by a period of time between 800 and

1000 milliseconds. This specification is derived from findings from
research on human gaze, which suggest that referential gaze pre-
cedes corresponding linguistic reference by approximately 800 to
1000 milliseconds [10, 18]. Each specification also has outcomes
that indicate the primary outcome of the specified behavior.

Behavior System

The behavior system generates humanlike behaviors based on
the current context and behavioral specifications and includes three
components: behavior selector, behavior coordinator, and behav-
ior generator. The behavior selector uses triggers defined in the
context model from the cognitive system to query the knowledge
base for appropriate behavioral specifications. The behavior coor-
dinator resolves conflicts and/or overlaps among specifications by
prioritizing them. While this prioritization can be done in many
ways, our current implementation uses outcomes as the criterion
for prioritizing specifications. For instance, if the current action
is task-oriented, rules with task outcomes are preferred over other
outcomes, such as building rapport. Another main function of the
behavior coordinator is to coordinate different behavioral channels
(e.g., gaze, gesture, and nodding).

Finally, the behavior generator organizes coordinated behaviors
in am XML format for execution. An example output behavior
is shown in Figure 5. In this example, the robot uses two behav-
ioral channels (i.e., gaze and speech) in synchrony. The timestamps
specified for gaze behavior correspond to the speech timeline. Time
periods for which no behaviors are specified are marked as un-
specified. How unspecified periods might be interpreted depends
on the particular developer’s design decisions. These decisions
are expressed in the behavior realizer, which is not a part of the
Toolkit. Our current implementation uses an event-trigger mech-
anism, which directs the robot to continue the previous specified
behavior until a new behavior is specified.

Integration with ROS

One of the goals of this work is to provide the HRI commu-
nity with an open-source tool that generates humanlike behavior
for a wide range of robot platforms. To this end, we integrated our
Toolkit with the Robot Operating System (ROS) by implementing
the Toolkit as a ROS node. ROS is becoming increasingly popular
in the robotics and HRI communities and finding use in HRI re-
search (e.g., [13, 25]). Figure 6 illustrates the current integration

<behaviors>
<channel type="gaze' >
<action endTime="'214.5" startTime="0" target="unspecified"/>
<action endTime="1160" startTime="214.5" target="the green
object with one peg'/>
<actoin endTime="'2735.4" startTime="1160" target="unspecified'/>
<action endTime="3597" startTime="2735.4" target="the red box'/>
<action endTime="4308" startTime="3597" target="unspecified'/>
<action endTime="4963" startTime="4308" target="listener'/>
</channel>
<channel type="speech'>
Could you help me put the green object with one peg into the red
box, please?
</channel>
</behaviors>

Channel: Gaze
Gaze toward object

green ohzect with one peg red box

. listener
Gaze toward listener —

Channel: Speech

Linguistic Reference the green object withione peg  the red box

S y " " - 5
Utterance Could you help me put, the green object with one peg into,the red box, please?

Figure 5: An example behavior output generated by the Toolkit in XML
(top) and in visual representation (bottom).
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of the Toolkit into ROS. In our future work, we plan to improve
this integration by migrating each subsystem into a ROS node and
using ROS communication protocols to establish information flow
among the subsystems.

Various sensors available in ROS can be used by publishing gath-
ered sensor data for the Toolkit to use. Similarly, robotic platforms
available in ROS can work with the Toolkit by subscribing to the
behavior output. Behavior realizer is a ROS node that interprets the
behavior output generated by the Toolkit and sends the commands
necessary to execute the behavior to the robot. The behavior re-
alizer uses the service communication with the world manager to
obtain information on the environment. The behavior realizer also
informs the Toolkit of the status of the execution of specified be-
haviors (e.g., the completion of an action) through the flow control.
A dedicated behavior realizer is needed for each robot platform to
realize the behavioral output. This modularity makes it possible for
the Toolkit to work with a wide range of robot platforms. By the
time of the writing of this paper, we have integrated and tested the
Toolkit with two robot platforms, Wakamaru and PR2 (simulated in
Gazebo). The study reported in the next section uses the integrated
system of the Toolkit, ROS, and the Wakamaru robot.

4. EVALUATION

Many aspects of the Toolkit need to be evaluated. One such
aspect is its usability: Is the Toolkit easy to use by the devel-
opers? Another aspect is effectiveness: Does the Toolkit gener-
ate robot behaviors that are effective in achieving communicative
goals? While both evaluations are valuable and necessary in as-
sessing our Toolkit, the current paper focuses on the evaluation of
the effectiveness of the Toolkit in generating humanlike social be-
havior for robots, focusing particularly on gaze behavior.

4.1 Hypotheses

Drawing on gaze behavior literature, we have developed three
hypotheses on how the gaze behaviors generated by our toolkit
might affect social, cognitive, and task outcomes in human-robot
interaction against different baseline specifications.

Hypothesis 1: Participants will recall the information that the
robot presents to them more accurately when the robot employs the
gaze behaviors generated by our toolkit than they will when the
robot employs alternative behaviors. The basis of this hypothesis is
the finding from gaze literature that gaze cues clarify what is being
referred to in speech and improve story comprehension [26].

Hypothesis 2: Participants’ performance in a collaborative sort-
ing task will be higher when the robot employs gaze behaviors gen-
erated by our toolkit than it will when the robot employs alternative
behaviors. This hypothesis builds on prior work in human-robot in-
teraction that suggests that appropriately timed gaze cues of a robot

facilitate the effective locating of information among distractions
[27].

Hypothesis 3: Participants will evaluate the robot as more nat-
ural, likable, and competent when it employs gaze cues generated
by our toolkit than they will when the robot generates alternative
behaviors. This prediction follows findings from our prior research
that gaze cues shape the favorability of the robot [21, 19].

4.2 Participants

A total of 32 participants were recruited for the evaluation study.
All participants were native English speakers from the Madison,
Wisconsin area with an average age of 24.9 years, ranging between
18 and 61. Average familiarity with robots among the participants
was relatively low (M=3.25, SD=1.67) and verage familiarity with
the experimental tasks was also low (M=2.13, SD=1.21) when mea-
sured by seven-point rating scales.

4.3 Experimental Design, Task, & Procedure

We tested our hypotheses in a laboratory experiment, which in-
volved two human-robot interaction scenarios in order to increase
the generalizability of our findings across task contexts. In the first
scenario, the robot told participants the story of the 12 signs of the
Chinese Zodiac (see top picture in Figure 7). In its story, the robot
referred to a set of cards that were laid on a table located between
the robot and the participant. The cards showed pictures of the
12 animal characters and the figure mentioned in the story. The
second scenario involved a collaborative categorization task (see
bottom picture in Figure 7). In the task, the robot instructed the
participants to categorize a set of colored lego blocks into different
colored boxes. There were 15 blocks with different colors, sizes,
and heights and two colored boxes laid on the table located between
the robot and the participant. The participant did not know how the
each block should be categorized and had to wait for instructions
from the robot to place each block into its respective box. We used
a pre-recorded human voice for the robot’s speech and modulated
its pitch to create a gender-neutral voice.

We manipulated the specifications in the knowledge base of our
toolkit to create the following four conditions for both tasks:

(1) Humanlike: The robot exhibited gaze behaviors generated
by our toolkit using the following social behavioral rules (full
specifications of these rules can be found on the project web-
site):

+ Referential gaze precedes linguistic reference by approximately
800 to 1000 milliseconds [10, 18].
+ The speaker looks toward the listener at the end of a turn [8].

* The speaker looks toward the person whom he/she is greeting
[14].

(1) Delayed: The robot showed the same behaviors as it did in
the humanlike condition except that the behaviors were de-
layed, resembling the timings of the listener as opposed to
that of the speaker, e.g., referential gaze following the on-
set of the linguistic reference by approximately 500 to 1000
milliseconds [9].

(3) Incongruent: The robot followed the timings in the human-
like condition, but looked toward an object that was different
from what was referred to in the linguistic reference.

(4) No-gaze: The robot did not display any gaze behaviors other
than tracking the participant’s face.

In all conditions, the robot tracked the participant’s face when the
specified gaze behavior involved looking toward the listener. The
linguistic references in the robot’s speech were manually marked.

The study followed a between-participants design. Participants
were randomly assigned to one of the four conditions. There were



Figure 7: The setup of the storytelling (top) and collaborative work (bot-
tom) tasks in the experiment.

four male and four female participants in each condition. The first
and second task involved a total of one and eight trials, respectively.
In each trial of the second task, the order in which the robot referred
to the objects was randomized. At the beginning of the study, the
experimenter provided the participants with a brief introduction of
the goals of the study and obtained informed consent. After the first
task, the participants took a three-minute break while the experi-
menter prepared for the second task. After completing the second
task, the participants were asked to complete a recall test about the
story. They then filled out a post-experiment questionnaire. At the
end of the study, the experimenter interviewed and debriefed the
participants. The experiment took approximately 30 minutes. The
participants received $5 for their participation.

4.4 Measurement

The two independent variables in our study were the manipula-
tion in the behavioral specifications for the robot’s gaze behavior
and participant gender. We measured two types of dependent vari-
ables, objective and subjective.

Objective: Following the storytelling task, we measured the par-
ticipants’ recall of the details of the robot’s story. A total of 10
questions were asked in the recall test. All questions were related
to the order in which the characters were presented in the story
about the signs of the Chinese Zodiac. The questions followed
true-or-false, multiple-choice, or multi-select formats. An exam-
ple question is provided below.

Q: The Dragon is before the Rabbit in the Zodiac cycle.
A: “False”

Following the collaborative work task, we measured the time that
the participant took to locate objects to which the robot referred.
In particular, we measured the time between the end of the linguis-
tic reference and one of the following cases: (1) the participant’s
last gaze toward the object before moving the object, (2) the par-
ticipant touching the object, or (3) the participant reaching for the
object. This measure served as a measure of task performance and
captured how fast the participants located the information needed
to complete the task.

Subjective: We used a post-experiment questionnaire to mea-
sure participants’ perceptions of the robot in terms of naturalness
of behavior, likability, and competence. The questionnaire also

included several manipulation-check questions. Seven-point rat-
ing scales were used in all questionnaire items. The naturalness
scale, which consisted of seven items, measured how participants
perceived the naturalness of the robot’s behavior. The likability
scale consisted of 10 items, which measured participants’ ratings
of the likability of the robot. The competence scale, which con-
sisted of 14 items, measured the participants’ perceptions of the
robot’s competence in the task and its overall competence. Item
reliabilities for naturalness (Cronbach’s ac = .79), likability (Cron-
bach’s @ = .90), and competence (Cronbach’s o = .85) scales
were sufficiently high.

4.5 Results

We used one-way analyses of variance (ANOVA) to analyze data
from our manipulation checks and two-way analyses of variance for
objective and subjective measures.

Manipulation checks: To test whether the manipulation in the
robot’s gaze behavior was successful, we asked participants whether
the robot’s gaze seemed to be random, whether the timing of when
the robot looked toward objects seemed right, whether the timing of
when the robot referred to an object and looked toward it matched,
and whether the robot’s gaze and speech were synchronized. The
results showed that the participants were able to identify the differ-
ences across conditions in the majority of these measures; the gaze
manipulation had a significant effect on whether the participants
found the robot’s gaze to be random, F'(3,28) = 3.55, p = .027,
7712) = 0.275, whether the timing of when the robot looked toward
objects seemed right, F'(3,28) = 11.83, p < .001, ng = 0.559,
whether they thought that the timing of when the robot referred
to an object and looked toward it matched, F'(3,28) = 33.42,
p < .001, ni = 0.782, and whether they found the robot’s gaze
and speech to be synchronized, F'(3,28) = 4.96, p = .007, 775 =
0.347. There was no main effect of the manipulation on whether
the participants thought that the robot looked toward them at the
right time, F(3,28) = 0.78,p = .514, 2 = 0.077. An explana-
tion for this result is that the robot looked toward the participants
for the majority of the time by tracking their faces including the no
gaze condition.

Objective: Our first hypothesis predicted that participants would
have better recall of the story told by the robot when it displayed
humanlike gaze behavior than they would when the robot displayed
alternative behaviors. Our data confirmed this hypothesis. The
number of correct answers out of ten questions in the recall test
were on average 7.38 (SD = 2.67), 425 (SD = 2.49), 4.50
(SD = 1.41), and 4.75 (SD = 1.39) for humanlike, delayed,
incongruent, and no gaze, respectively. The analysis of variance
found a significant main effect of the robot’s gaze behavior on re-
call accuracy, F'(3,24) = 4.51, p = .012, 2 = 0.360. Pairwise
comparisons using Tukey’s HSD test revealed that the recall perfor-
mance of the participants in the humanlike condition significantly
outperformed those of the participants in delayed, F'(1,24) =
10.45, p = .004, 173 = 0.303, incongruent, F'(1,24) = 8.84,
p = .007, 77 = 0.269, and no-gaze, F'(1,24) = 7.37,p = .012,
77,2) = 0.235, conditions. We also found a main effect of gender
on participants’ recall accuracy; male participants had better re-
call performance than female participants had, F'(1,24) = 5.22,
p = .031, ng = 0.179. These results are illustrated in Figure
8. Post-hoc tests showed that male participants’ recall was sig-
nificantly better than that of female participants in the humanlike
condition, F(1,24) = 5.65, p = .026, 77 = 0.191.

The second hypothesis predicted that the participants would
show better task performance—measured by the time that partic-
ipants took to locate objects that the robot referred to—in the col-
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laborative work task when the robot displayed humanlike gaze be-
havior than they would when the robot showed alternative behav-
iors. This hypothesis was also supported by our data. When the
end of the linguistic reference was represented by 0, the average
time in milliseconds that the participants took to locate the object
were -975.26 (SD = 405.43), 829.51 (SD = 779.04), 334.78
(SD = 241.00), and 457.05 (SD = 292.51) for humanlike, de-
layed, incongruent, and no-gaze conditions, respectively. The anal-
ysis of variance found a main effect of the robot’s gaze behavior
on locating time, F'(3,24) = 23.22, p < .001, n; = 0.225.
Pairwise comparisons using Tukey’s HSD test revealed that par-
ticipants in the humanlike condition located the objects that the
robot referred to in a significantly shorter time than participants
in the delayed, F/(1,24) = 61.12, p < .001, 7 = 0.662, incon-
gruent, F'(1,24) = 32.20, p < .001, 772 = 0.578, and no-gaze,
F(1,24) = 38.50, p < .001, 17§ = 0.610, conditions did (see
Figure 8).

Subjective: The third hypothesis predicted that the participants
would perceive the robot to be more natural, likable, and compe-
tent in the humanlike condition than they would in the other condi-
tions. Our data provided partial support for this hypothesis. Re-
sults from the subjective measures showed a main effect of the
gaze manipulation on participants’ perceptions of the robot’s nat-
uralness, F'(3,24) = 4.05, p = .018, n§ = 0.336, and com-
petence, F'(3,24) = 7.79, p < .001, n, = 0.493, while the
effect of the manipulation on measures of likability was not sig-
nificant, ['(3,24) = 1.46, p = .249, n2 = 0.155. In particu-
lar, participants in the humanlike condition rated the robot to be
more natural than they did in the incongruent, F'(1,24) = 8.44,
p = .009, 7 = 0.260, and no gaze, F'(1,24) = 8.67, p = .007,
nﬁ = 0.265, conditions. Male participants in the incongruent
condition rated the robot to be less natural than female partici-
pants did, F/(1,24) = 4.69, p = .041, n3 = 0.163. How-
ever, participants in both the humanlike and delayed conditions
found the robot to be equally natural, F'(1,24) = 1.58, p = .221,
nﬁ = 0.062. The participants in the humanlike condition rated
the robot to be more competent than they did in the delayed con-
dition, F'(1,24) = 10.81, p = .003, 772 = 0.311, incongru-
ent, [(1,24) = 11.14, p = .003, 7 = 0.317, and no-gaze,
F(1,24) = 21.37, p < .001, n; = 0.471, conditions. These
results are also illustrated in Figure 8.

4.6 Discussion

The results provide support for the majority of our hypotheses
in measures of information recall, collaborative work, and percep-
tions of the robot. Participants had better recall of information and
located objects that the robot referred to faster when it used hu-

manlike gaze behavior generated by our toolkit than they did when
the robot displayed alternative behaviors. Moreover, participants
found the robot to be more natural and competent when it exhib-
ited humanlike gaze behavior than they did in other baseline condi-
tions. These results suggest that the gaze behaviors that our toolkit
generated were effective in evoking social, cognitive, and task out-
comes in human-robot interaction, as predicted by our knowledge
of human-human behavior. They also confirm that gaze cues serve
as powerful communicative signals in storytelling and instructional
settings.

Our data indicates that the participants in the delayed, incongru-
ent, and no-gaze conditions needed roughly 300 to 800 millisec-
onds to locate the object that the robot referred to after it completed
the linguistic reference to the object (see Figure 8). This result is
consistent with findings in the gaze literature; in the absence of
speaker gaze cues, partners look toward the object of reference ap-
proximately 200 to 300 milliseconds after they hear the reference
[1] and approximately 500 to 1000 milliseconds after the onset of
the spoken reference [9]. The result suggests that the participants
in the baseline conditions (i.e., delayed, incongruent, and no-gaze)
relied primarily on the robot’s speech to locate the object of ref-
erence, while those in the humanlike gaze condition used gaze in-
formation to locate the object, completing the task even before the
robot ended the linguistic reference.

5. GENERAL DISCUSSION

In this paper, we proposed a framework that uses behavioral
specifications from the social sciences and an interaction model in-
spired by Activity Theory to guide the systematic generation of hu-
manlike behavior for robots. We presented Robot Behavior Toolkit,
an implementation of this framework, and evaluated its effective-
ness in generating social behaviors that achieve positive social, cog-
nitive, and task outcomes in a human-robot interaction study with
two scenarios. Our findings highlight the potential of our toolkit for
generating effective robot behaviors and confirm the findings from
previous research including our own that, using humanlike social
behavior effectively, robots can achieve significant social, cogni-
tive, and task improvements in human-robot interaction.

This work also showed that a small number of behavioral speci-
fications are sufficient to generate robot gaze behaviors that achieve
significant social, cognitive, and task improvements in human-
robot interaction. While our study used a small number of behav-
ioral specifications for gaze behavior for experimental purposes,
the Toolkit offers the potential to realize complex humanlike be-
haviors by combining a large number of specifications for multiple
channels of behavior, which is a significant challenge when hard-
coding behavioral specifications into robots. The Toolkit also offers



social scientists and HRI researchers the ability to validate new be-
havioral specifications by realizing them in interactive human-robot
interaction scenarios.

The Toolkit and our current evaluation, however, are not with-
out limitations. Here we discuss these limitations and the future
work that might address them. First, the evaluation of the Toolkit
used simulated sensor data, as we focused on generating robot be-
havior rather than recognizing human behavior. However, more
investigation is needed to understand how our Toolkit might func-
tion in more realistic interactive settings in which the recognition
of human activity and the environment might be incomplete due to
unreliable sensor data. Furthermore, how our system might support
more interactive tasks, e.g., tasks that require significant input from
human partners, remains an open question. Second, our evaluation
focused on assessing the effectiveness of the Toolkit in generating
humanlike robot behavior and whether the Toolkit is easy to use
by developers is unknown. In our future work, we plan to conduct
usability tests to assess usability and to gain a better understand
of how the design of the Toolkit might be extended to address the
needs of developers and HRI researchers.

Third, the current paper focuses on gaze behavior and a small
number of behavioral specification in order to achieve a proof-of-
concept evaluation of our system. As a next step, we plan to extend
our repository of behavioral specifications to include a wider range
of behavioral channels and to investigate interactions among these
channels of behavior. Fourth, our current design of the Toolkit
requires behavioral specifications to be unchanging and explicitly
entered into a repository. However, machine learning techniques
might allow robots to generate new specifications and modify ex-
isting specifications based on experience and we hope to explore
this potentially fruitful area in our future work. Fourth, the Toolkit
in its current design selects behavioral specifications based on the
target outcomes specified in the activity model. We plan to explore
alternative ranking mechanism for behavioral specifications, as we
envision the Toolkit to include a large number of specifications,
which might suggest conflicting behavioral outputs.

We hope that the Robot Behavior Toolkit serves as a useful re-
source for the HRI community and inspires further development in
designing effective social behaviors for robots.
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