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Abstract

The unique social presence of robots can be leveraged in learning situations to increase

comfortability and engagement of kids, while still providing instructional guidance.

When and how to interfere to provide feedback on their mistakes is still not fully

clear. One effective feedback strategy used by human tutors is to implicitly inform

the students of their errors rather than explicitly providing corrective feedback. This

essay explores if and how a social robot can be utilized to provide implicit feedback to

a user who is performing spatial visualization tasks. We explore impact of implicit

and explicit feedback strategies on user’s learning gains, self-regulation and perception

of robot during 3D block building tasks in one-on-one child-robot tutoring.

We demonstrate a realtime system that tracks the assembly of a 3D block structure

using a RealSense® RGB-D camera. The system allows three control actions: Add,

Remove and Adjust on 2 × 4 and 2 × 4 blocks (similar to Lego®) of four basic colors

(red, blue, green and yellow) to manipulate the 3D structure in the play area. 3D

structures can be authored in the Learning mode for system to record, and tracking

enables the robot to provide selected feedback in the Teaching mode depending on the

type of mistake made by the user. Proposed perception system is capable of detecting

five types of mistakes i.e., mistake in: shape, color, orientation, level from base and

position of the block.

The feedback provided by the robot is based on mistake made by the user. Either

implicit or explicit feedback, chosen randomly, is narrated by the robot. Various

feedback statements are designed to implicitly inform the user of the mistake made.
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Two robot behaviours have been designed to support the effective delivery of feedback

statements. Nodding is used in conjunction with continuers i.e., Go on, Continue,

Good, Hmm and Right when the user action results in a correct outcome. Whereas,

referential gaze is employed along with the requisite feedback statement whenever the

user commits a mistake during the assembly task.

We conducted an exploratory study to evaluate our robot assisted 3D block building

system to augment spatial visualization skills with one participant. We found that

the system was easy to use. The robot was perceived as trustworthy, fun and

interesting. Intentions of the robot are communicated through feedback statements

and its behaviour i.e., nodding and referential gaze. Our goal is to explore that the

suggestion of mistakes in implicit ways can help the users self-regulate and scaffold

their learning processes. However, we do not have enough evidence to support this

from our exploratory study.

Furthermore, we discuss shortcomings of our system, compare it to few existing

systems, discuss design implications and ways to improve it as future work. The

observations from the study with one elementary-aged study are contribution towards

our future endeavours in the field of social robotics and education.
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Chapter 1

Introduction

Good feedback practices by tutors in one-on-one sessions are essential for self-regulated

learning. For designing a good feedback practice, one needs to consider many factors.

One of many principles to think about design and evaluation of self-created feedback

procedures, is that feedback can be provided by a teacher, peer or tutor [1]. There is a

discussion that a good feedback strategy would inspire development of self-assessment.

Feedback comes in various forms and modes [2] i.e., immediate vs. delayed feedback

timing, single-try vs. multiple-try, adaptive vs. non-adaptive and implicit vs. explicit

feedback. In human-human interactions, experienced tutors tend to provide indirect

feedback to bring the attention of students to an error rather than giving corrective

explicit feedback [3]. Expert tutors also employ subtle techniques like delaying

affirmation or expressing short hesitation when a student inquires if he is doing alright,

thus, hinting him about a mistake in the current step [4]. There are other strategies

like asking a leading question or subtly suggesting the student to redirect. On the

other hand, it is argued that providing only implicit feedback can be detrimental. If a

student spends too much time guessing for a solution or redirecting himself, it would

be difficult for him to trace the path he took to solution [5]. Therefore, the tutoring

strategy should consider a trade-off between implicit and explicit feedback to allow

room for the student to explore and learn from his mistakes, yet not be confused or

stuck at an impasse.
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The argument has frequently been made that one way to achieve the effectiveness

of human tutoring in educational contexts is by using intelligent tutoring systems,

embodied agents and robots [6]. A recent survey of long-term human-robot interaction

(HRI) highlighted the increasing popularity of using social robots in educational

environments [7]. Studies recording attitude of children towards robot show positive

outcomes [8]. Although, there are a lot of unexplored topics in this field. While

prior research has attempted and succeeded to develop emotionally intelligent and

personalized robot tutors, most of these employ explicit feedback methods such as

informing the student that answer is wrong, or some step is wrong or giving hints on

how to solve the problem [9][10]. To the best of our knowledge, no robot tutoring

system has been used to study the effectiveness of implicit strategies to provide feedback

to students in one-on-one tutoring sessions. Moreover, there is little discussion on

spatial reasoning skills [11] in robot tutoring while it has been established that such

skills augment geometric and mathematical understanding of students [12]. Most

of the studies are limited to teaching languages (e.g., [9]) and solving mathematical

problems (e.g., [10]).

We contextualized our investigation into a one-on-one tutoring interaction. The

setup is shown in Figure 1-1. The setup consists of the following:

1. Perception system: To track actions of the participant.

2. Intelligent Robot Tutor: Acts as a tutor to provide feedback based on actions of

the participant.

3. 3D blocks: Serves as the playground for the participant to solve designed spatial

reasoning task.

We collected data from one participant to explore the impact of implicit and explicit

feedback on self-efficacy and learning gain, and her perception of such robot tutor

while working on a spatial reasoning task. Analysis of data has resulted in useful
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Figure 1-1. System Setup

design implications for future research. We believe that this study opens an interesting

research space in robot tutoring. Future studies about tradeoff between implicit and

explicit feedback, effectiveness of various types of implicit feedback, its personalization

and right timing for intervention etc. will follow.

In the next chapter, we review prior work in field of social robotics for education,

feedback practices in tutoring, and development, importance and augmentation of

spatial reasoning in early ages. We give background to our study. This review is

followed by a description of our system and how the exploratory study is designed

along with evaluation. We then discuss our findings and their implications for future

work, concluding with a summary of our contributions.
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Chapter 2

Background

Spatial Reasoning

Definitions and Categorization

Spatial reasoning has always been of paramount importance for human action and

thought. Various verbs e.g., locating, orienting, transforming, visualizing and navi-

gating. are used to indicate spatial reasoning. Thus, from navigating in 3D world to

mental manipulation of objects in our surroundings before physically moving them

around falls under umbrella of spatial reasoning. There is a considerable debate on the

relationships among “visualization”, “visual-spatial reasoning”, and “spatial reasoning”.

These terms are used interchangeably by some and some present differences. In the

light of these uncertainties, Linn and Peterson (1985) [13] suggested an approach to

divide spatial skills into three broad categories:

1. Spatial Perception: Spatial perception is the ability to determine spatial relation-

ships with respect to the orientation one's own body while ignoring distractions.

An example test is water level task that requires participants to draw a horizontal

line in titled water bottle [14].

2. Mental Rotation: Mental rotation is the ability to mentally rotate a two or

three-dimensional objects rapidly and accurately. Shepard and his colleagues
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[15] [16] administered tasks to measure the speed of mental rotation.

3. Spatial Visualization: Spatial visualization is the ability to perform complicated,

multi-step manipulations of spatially presented information to complete a task.

Such tasks may involve the similar underlying processes as in spatial perception

and mental rotation but may have multiple possible correct solutions. Three

dimensional block building is an example of such tasks.

McGee [17] explains that there are two main factors of spatial ability:

1. Spatial Visualization: Spatial visualization is the ability to imagine manipulation,

rotation, twisting or inverting objects without reference to one’s self.

2. Spatial Orientation: Spatial orientation is associated with one’s ability to imagine

the view of an object from different perspectives and directions.

In his book, Davis [18] uses the topological framework of spatial skills proposed by

Uttal [19]. The 2 × 2 categorization scheme is based on two key dimensions of spatial

reasoning: static versus dynamic and intrinsic versus extrinsic skills as summarized

in Figure 2-1. As per his analysis, the skills and tasks did not always fit into one

category or the other. Skills shifted from one category to another depending on the

interpretation of the task at hand or ways in which a single task is performed specially

when young children’s spatial reasoning is concerned.

Regardless of these categorization, some sort of mental imagery and manipulation is

involved in spatial reasoning skills. For the scope of this study, spatial visualization

component of spatial reasoning is considered which is the ability to imagine an object

from one's perspective, mentally rotate it and imagine the rotated image from the

same perspective correctly to complete a complicated multi-step task [13].
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Figure 2-1. 2x2 topology of spatial reasoning categories [18].

Development of Spatial Reasoning in Early Years

Development of spatial reasoning starts in early years of human life. Different re-

searchers have presented their theories about timeline of development of spatial

reasoning skills in children [11]. Piaget and Inhelder [20] indicated that children

go through three stages during this development of their cognitive spatial ability:

preoperational stage, concrete operational stage and formal operational stage. They

indicated that children under six years of age can locate objects with respect to them-

selves and are aware of topological spatial relationships. They are in preoperational

stage since they understand concepts like separation, proximity and open/close. In

concrete operational stage, children of ages 7-9 years develop a cognitive map with
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a fixed frame of reference helping them with external view and orientation such as

right/left and before/behind. At age of 11, as children enter the last stage i.e., formal

operational stage, they understand concept of fixed positions relative to each other

that assist them in understanding concepts such as proportional reduction of scale,

and estimating straight-line relative distances.

However, later around 2000, Huttenlocher and Newcombe [21] suggest that spatial

reasoning develops even earlier, as early as at age of 6 months. Stages presented by

them are summarized as follows [11]:

1. Infants at age of 6 months are able to use dead reckoning skills to understand

location of objects around. This helps them in keeping track of moving object’s

direction.

2. At age of 12 months, babies can find hidden stimuli with help of understanding

of distance.

3. At age of 18 months, they can navigate easy routes.

4. Using the distance information from landmarks, kids can define locations at age

of 2 years. Piaget had suggested that does not happen until they are nine or ten.

5. Kids at age of 3 are able to use simple maps and models.

6. If encouraged to play with maps and tools, kids can fully develop their spatial

reasoning skills by the age of nine or ten.

Frick and Wang [22] experiments suggest that 14 month olds with some prior experience

can activate mental rotation ability. Younger kids manifest the spatial reasoning skills

which can be channeled by mental rotation exercises at early age to further strengthen

this ability. However, at this young age, children can only continue an already started

rotation.
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Research on spatial transformations has indicated complex tasks like mental paper

folding task emerges at age of 5.5 years and continue to improve through early

elementary school [23]. Object based spatial transformations require children to posses

spatial manipulation ability of mental imagery. This occurs for kids aged between 7

and 8 years. Egocentric perspective transformations develop later at age of 8 years

rather than 7, than object-based transformations [24].

Role of Spatial Reasoning in Mathematics

Over 60 years ago, a report of a National Science Foundation (NSF) advisory panel,

Scientific Careers, was published [25] which emphasized on critical role of spatial

ability. It was characterized as an individual difference that affected learning the

advanced scientific-technical concepts for outstanding performance in STEM (science,

technology, engineering and mathematics).Despite that this fact was established as

early as 1957, spatial reasoning skills are not included in curriculum and instruction

in educational settings even in STEM domains. Various studies and projects followed

further solidifying the positive effect of spatial reasoning skills on success in STEM

fields [26].

There are several theories of quantitative reasoning on how spatial reasoning skills

may support success in mathematics. Dehaene and his colleagues suggests that quan-

titative reasoning comprises of two core systems of numbers which tap different neural

networks in the human brain: one being approximate and non-symbolic and the other

is precise and symbolic. It is suggested that the first core shares neural activity with

spatial reasoning skills and the second core is more associated with exact counting

and symbolic mathematical operations [27]. As early schooling results in the two

core systems of numbers merging, spatial skills’ impact on mathematics achievement

via the second symbolic system of number will increase significantly. Symbolic and

8



non-symbolic numerical thinking will mutually enhance one and other as these are

taught over time [28]. Existing evidence suggests that the spatial skills, if polished in

early elementary school curriculum, will provide a strong foundation for mathematics

achievement in elementary school and beyond.

Various studies imply that in elementary school students, spatial skills are known

to support understanding of geometry [29], word problem solving and application of

more complex and complicated computation strategies [30], especially in girls [31].

Longitudinal studies have also shown that early spatial skills predict later success in

mathematics. For instance, spatial reasoning skills measured in first-grade girls are

crucial predictors of fifth-grade analytical math reasoning. First-grade assessments

included spatial skills, verbal skills, addition/subtraction skills, and frequency of choice

of a decomposition or retrieval strategy on the addition/subtraction problems. In

fifth grade, girls were given an arithmetic fluency test, a mental rotation spatial task,

and a numeric and algebra math reasoning test [32]. Similarly, spatial visualization

predicted as early as in kindergarten reflects arithmetic skills in third graders. Lin-

guistic and spatial skills can improve arithmetic development by enhancing children’s

number-related knowledge [33]. Even at early ages, both mental rotation and spatial

visualization skills have depicted associations with numeric operations and addition

and subtraction computational skills in grade 1,2,3 and even in kindergarten. A

32-week-teacher-led spatial reasoning intervention in K-2 classrooms highlighted the

importance of assisting development of spatial visualization in young kids as part

of early mathematics instruction [34]. Another longitudinal study investigated the

development of spatial reasoning skills in 304 elementary school children as they

progressed from grade 2 to 4 which outlines effects of socioeconomic status, verbal

working memory and gender [35].

To summarize, spatial reasoning skills contribute positively to development of mathe-

matical understanding at early ages and are pertinent to achievements in STEM fields
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later on.

Ways to Augment Spatial Reasoning

Spatial reasoning can be augmented using various activities and games. Following are

some ways suggested to improve spatial skills:

1. Use spatial language and gestures in everyday instructions: Using spatial lan-

guage such as inside, outside, left, right, behind and on top of, assists babies in

learning spatial relations better [36]. For example, sentences to describe scenes:

The car is across the street under the tree. Asking kids to repeat after you helps

further. Hand-gestures along with spatial language can help kids learn better

[37].

2. Teach how to visualize using mind’s eye: Visualization is an essential tool for

spatial learning. If kids are instructed to visualize a problem while solving it,

they would perform much better. For instance, in an experiment, when a ball is

dropped even through a twisted tube, preschooler would tend to think it falls

right under. But when young kids are distracted from their gravity bias by

instructing them to visualize the path of the ball, more students get the right

answer [38].

3. Two-dimensional Puzzles and other activities: Various puzzles and matching

games can be used to enhance spatial reasoning skills of kids. For instance,

tangram, an ancient Chinese puzzle that consists of 7 pieces and can be rear-

ranged into many different shape can help increase spatial skills of students [39].

Similarly, jigsaw puzzle, origami, paper folding, and other open-ended puzzles

can help augment spatial visualization skills of kids as these require mental

manipulation of various shapes.

4. Three-dimensional block play: Building structures and objects with 3D blocks
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e.g., Lego® [40] and wooden blocks can significantly increase children’s ability

to manipulate things mentally. Giving them a structure to build will expand

their knowledge of spatial visualization. Block play is important in early years

in helping kids understand spatial reasoning skills which are important for later

STEM learning. When kids are prompted and asked questions about their block

play structures by teachers or helpers, it grows their use of spatial language

as well which is related to increase in spatial reasoning [41] and can play an

important role in scaffolding children’s building of more complex structures [42].

A planned block play program similar to Carol Stephenson can help greatly in

developing spatial reasoning skills through building complex block structures [43].

A study examining children’s puzzle play [44] shows that it predicts children’s

later performance on a spatial transformation task. It also discusses how early

puzzle play varies across children and engagement is associated with demographic

variables as well as levels of parent language input.

For the sake of this research, we explored 3D block building as the way to augment

spatial visualization that we experiment with in our system since 3D block building

tasks is a multi-step complex process that involves spatial visualization, mental rotation

and perspective taking skills.

Child-Robot Tutoring

Social robots have made their way in educational setting for children in recent years.

Research community has been focused on various aspects of social robots in education.

Benefits of social robots, technical challenges for building robot tutors, their efficacy,

impact of their appearance, role and their behaviour has been vastly studied [45].

Application of social robotics in education has become popular because of availability

of robust platforms, mature technology to the point that meaningful interactions

11



using language and nonverbal behaviour are possible, and the established fact that

embodiment results in higher learning gains in educational settings. In various

educational settings embodiment of a robot plays an important role on improving the

children’s performance, engagement and motivation [46] [47]. Many aspects of child-

robot tutoring has been investigates such as building models of student knowledge [48],

evaluating different teaching and instruction paradigms [49], personalizing content for

each child [9] and determining when and how to provide specific kind of assistance

and hints [50]. Much of work in which robot is used as a tutor focuses on one-on-one

interactions because these offer the greatest potential for personalization [45] [10].

Most of the research has focused on teaching languages [9] and solving mathematical

problems [10].

Child-Robot Tutoring and Spatial Reasoning

Spatial reasoning is rather unexplored in one-on-one child-robot tutoring. Reasons

can be complexity of interaction, lack of ways to track performance and measure

learning gains during complex tasks and difficulty in providing appropriate feedback.

However, over the past two decades computer-supported educational tools are being

used in learning of spatial skills particularly reflected in geometry e.g., Edwards

created a computer environment that enabled kids to learn introductory geometric

transformations [51]. GeoCAL [52], a multimedia learning software based on van

Hiele’s theory of geometric thinking [52] comprising of several games such as jigsaw

puzzles, shape tracer and stamping, has notable learning effects on geometric thinking

(visual association, description and abstraction).

However, models designed to improve spatial ability in 2D world by using Web-based

virtual environment [53] may not work at all in 3D world because of over-simplification

of the environment. Therefore, Keren et al. [12] suggested that spatial cognition

models should at least be partially embodied and assistive robots can serve the purpose
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in developing children’s visual-spatial and motor perception. They use assistive robots

for groups (2-3 kids) of kindergarten students to promote their geometrical thinking

which is one aspect of spatial cognition. The activity for this study is modification

of their previous research i.e., Nao (the robot) singing the Hebrew version of song,

"Head, Shoulders, Knees and Toes" while demonstrating the movements and invited

kids to do some movements [54]. In this study, robot asks to recognize basic shapes

on screen and distinguish between upper and lower parts of its body and are asked to

find and push relevant buttons.

To summarize, development of spatial reasoning specially spatial visualization skills in

3D environment using educational social robotics is limited and rather unexplored.

Thus, in this exploratory study we focus on providing a learning platform comprising

of a robot tutor to help learn spatial visualization skills using 3D block building. We

track the performance of children and assist them in completing a structure building

task in one-on-one child-robot tutoring session.

Feedback Strategies

Good feedback practices by tutors in one-on-one sessions are essential for self-regulated

learning. Good feedback practice is broadly defined as something that reinforces the

student’s capability to self-regulate their own performance. Self-efficacy in turn has

positive effects on not only achievement, but also motivational variables such as

engagement, effort and persistence [55]. For designing a good feedback practice, one

needs to consider many factors. One of many principles to think about design and

evaluation of self-created feedback procedures, is that feedback can be provided by

a teacher, peer or tutor. Seven principles to think about design and evaluation of

self-created feedback procedures are described below [1]: Good feedback practice:

1. helps clarify what good performance is (goals, criteria, expected standards)
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2. facilitates the development of self-assessment (reflection) in learning

3. delivers high quality information to students about their learning

4. encourages teacher and peer dialogue around learning;

5. encourages positive motivational beliefs and self-esteem

6. provides opportunities to close the gap between current and desired performance

7. provides information to teachers that can be used to help shape teaching

Informative tutoring feedback provides useful information strategically for task com-

pletion rather than offering complete solution. Interactive-Tutoring-Feedback (ITF)

refers to feedback components to guide the student toward successful task comple-

tion. Narciss has proposed the ITF model that encapsulated the state of the art in

developing feedback strategies for interactive learning tasks [56] [2] [57]. As per this

ITF model, a feedback strategy is defined as a coordinated plan integrating clear and

decisive statements specifying at least the following aspects of a learning process with

feedback [58]:

1. scope and function: what goals or purposes the feedback serves.

2. content: what information is given through the feedback.

3. presentation: in which form and modes the feedback content is given.

4. conditions: under which situational or individual conditions the feedback is

provided.

5. timing and schedule: which event within the learning process trigger feedback

statements.
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This definition enables a wide range of possibilities when it comes to designing feedback

strategies. Feedback comes in various forms and modes i.e., immediate vs. delayed

feedback timing, single-try vs multiple-try, adaptive vs non-adaptive and implicit

vs explicit feedback [2]. In human-human interactions, experienced tutors tend to

provide indirect feedback to bring the attention of students to an error rather than

giving corrective explicit feedback [3]. Indirect corrective feedback is argued to address

some of weakness of direct corrective feedback (CF) (e.g., no explanation to why the

correction is needed), as indirect CF engages learners to analyze their own work and

figure out and correct their mistakes Expert tutors also employ subtle techniques like

delaying affirmation or expressing short hesitation when student inquires if he is doing

alright, thus, hinting him about a mistake in the current step [4]. There are other

strategies like asking a leading question or subtly suggesting the student to redirect.

Such strategies are enlisted in Table 2-I. On the other hand, it is argued that providing

only implicit feedback can be detrimental. If a student spends too much time guessing

for a solution or redirecting himself, it would be difficult for him to trace the path he

took to solution [5]. Therefore, the tutoring strategy might be considered a trade-off

between implicit and explicit feedback to allow room for the student to explore and

learn from his mistakes, yet not be confused or stuck at an impasse.

Kleij et al. [59] present a meta-analysis of effects of feedback on student’s learning

outcomes in computer-based learning environments. They deduce that elaborated

feedback is particularly more effective than feedback regarding correctness of answer

and providing correct answer, specially in mathematics. The results suggested that

immediate feedback is better for lower order learning than delayed feedback, whereas

delayed feedback is more effective for high order learning. In the literature, there

are contradicting results about effectiveness of immediate and delayed feedback. It

seems to be task dependent. Thus, in this exploratory study we focus on providing

direct/explicit or indirect/implicit feedback as soon as a mistake is made. We also
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provide confirmations on correct actions of user.

Feedback Strategy Reference
1. Draw student’s attention to an error and provide second chance [3]
2. Frequent feedback: Brief agreement with each step (e.g., Mhm and
Right) when student is thinking out loud looking for agreement) or a
short hesitation (often less than 1 sec) in responding with an “okay”
indicating to students to assume that something was amiss with the
current step

page 9,10
of [4]

3. Asking a leading question/ giving clues [4]
4. Asking a leading question/ giving clues. Wait for student to
complete your utterance, if student fails, complete it. Both work to
avert a wrong solution

[3]

5. Procedural hints and explanations: procedural hints point out
appropriate strategy or mention key aspect of underlying concepts (e.g,.
When expanding a fraction, one alters the numerator and denominator
equally). While procedural explanations provide more details about
how to put this procedure into practice. (e.g., When expanding a
fraction, one alters the numerator and denominator equally. To do
this, multiply the numerator and denominator by the same number.).

[60]

6. Conceptual hints and explanations: focus on conceptual knowl-
edge important for solving the target problem e.g., conceptual hint:
When expanding a fraction, its value must not change. and conceptual
explanation: When expanding a fraction, its value must not change.
While expanding, the denominator increases, that means the parti-
tioning becomes more fine-grained. But since the value of the whole
fraction does not change, the numerator has to be altered in the same
way. Conceptual explanations provide additional information about
relevancy of the concepts to the given problem.

[60]

7. Feedback consists of following components: [61]
a. Definition: verbally introduce definitions of domain concepts e.g.,
Attributes are characteristics of an object that persist through the life
of the object..
b. Example: give an illustration of given concept e.g., Attributes of a
car might be its color, model and make
c. Question: ask a question for clarity of learner e.g., Why did you set
the data type for money to string?
d. Scaffold: prompts the learner who might be lost towards a correct
solution by pointing in right direction e.g., Use the tutorial to learn
about datatypes.
e. Picture: contains images, animation or video to visually explain a
concept.
f. Relationships: provides information to help learner understand how
a concept fits into the overall problem solving activity.
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g. Application: shows application of a concept e.g., a learner might
know definition of a constructor but might not know that a class could
have multiple constructors.
h. Exercise: supports active learning through hands-on activities or
by applying a concept. It is more like a tutorial mode.
8. Corrective feedback have been classified into two groups for second
language teaching: [62]

a. Giving-Answer Strategies (GAS): when teacher directly gives the
target form or shows the location of student’s error. These includes:
repetition, recast, explicit correction and giving answer.
b. Prompting-Answer Strategies (PAS): when teacher pushes stu-
dents to notice their error and correct it themselves. These include:
Meta-linguistic cues (teacher provides information or asks questions
regarding the correctness of the student’s utterance), clarification re-
quests and elicitation(allowing student to complete teacher’s utterance
and by asking student to reformulate the utterance).

Table 2-I. Feedback strategies from the literature.
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Chapter 3

System Overview

The system is set up as a play area where a user tries to replicate a 3D structure in

presence of a robot tutor which provides requisite feedback towards completion of the

task. The system, as shown in Figure 1-1, consists of three modules:

1. Perception: Tracks the play area using color + depth (RGB-D) camera stream

to detect errors.

2. Feedback: Robot provides selected feedback based on errors detected.

3. Robot Behaviour: Behavioural actions displayed by the robot that makes it

life-like.

Perception

Perception module tracks three task actions while building the given 3D structure

in the play area. Output of this module is mistakes made by users. This module

has various aspects such as detection of RGB-D data, detection of different types

of blocks, actions taken by user to manipulate the structure, creating and storing a

model of structure and comparing it to target structure to look for mistakes made by

user. These aspects are explained below in detail:
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Setup

The system consists of a RealSense® d435i RGB-D camera mounted on a stand to the

right of table surface looking at the playground from right side while the user sits in

front of table as shown in Figure 1-1. The camera looks obliquely down on the table

surface. On the left side of the table, there is a robot named Maki who acts as a tutor.

A set of 2 × 2 and 2 × 4 blocks (similar to Lego® and Duplo®) in 4 basic colors (red,

blue, green and yellow) are placed on the table within the reach of user. The table

surface has four demarcated regions – Play area, Add box, Remove box and Adjust

box. The last three areas are used as control boxes for the users to define their actions.

This setup is inspired from research by Gupta and colleagues [63]. A base plate for

blocks is placed in play area to fix the assembly of structure. The function of each

control box is defined as under:

1. Add box: If user intends to add a block to assembly, he would place the block

in the add box for a couple of seconds before moving it to play area which will

indicate the tracking system to look for a new block of given shape and color in

the play area.

2. Remove box: If user intends to remove a block from assembly, he would remove

the block from play area and place it in the remove box before placing it on side

of a table, which will indicate the tracking system to look for a block of given

shape and color that has been removed from the play area to update the model.

3. Adjust box: If user intends to adjust a block (change it’s position) in the

assembly, he would remove the block from play area and place it in the adjust

box and then move it back to play area as per his desire. This will indicate the

tracking system to look for and remove the block of given shape and color from

the assembly once a block is detected in adjust box and then start looking for

the same block in play area to add it to a new location.
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Different Modes

The main goal of system is to track user’s performance towards completion of a target

3D structure and flag the mistakes made by user during the process. To achieve that

system must compare the assembly to the target structure during the task. To do so,

the tracking system must record the target structure first. Thus, to comply with the

requirements, we propose that the system operates in two modes:

1. Learning Mode: In the learning mode, the experimenter (or teacher, supervisor,

parent o guardian of the user) builds the required 3D structure using add, remove

and adjust commands. The tracking system stores the constructed 3D structure

as a target structure in a file. The representation of play area, block models

and 3D structure is explained in section below. In short, the system records the

structure from demonstration by human expert in the learning mode.

2. Teaching Mode: In the teaching mode, the system tracks the assembly of 3D

structure by the user (a child) and compares each action taken by user with the

target structure and flags any mistake made. It compares the current structure

with the target structure on every user action and evaluate the deviations from

each possible correct action since there can be multiple correct actions at every

step. If the user action does not coincide fully with any of the possible correct

actions, an error is flagged. In short, the system provides feedback to the user

based on the previously recorded structure in this mode.

Representation of Play Area and Blocks

For tracking the model and inferring updates, the system needs some sort of represen-

tation for the assembly model. We assume that the model resides in a voxelized space

[63] where each voxel is equal to 1 × 1 block. Thus, the model is made of 2 × 2 block

that occupies 4 voxels and 2 × 4 blocks that occupy 8 voxels. Following information is
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maintained for the model which is coded as a class (Assembly_Graph) in python.

For learning and teaching modes, there are slight changes in the class attributes and

functions which will be discussed as needed.

1. .block_dict: A dictionary of structure type Block (class created in python)

where each block has following attributes:

(a) .xy: list of voxels that the block is occupying. x and y coordinates represent

the voxel as (x,y). The first block , called the reference block, is fixed in the

play area and its top left corner (from camera’s viewpoint) is assigned the

value of (0,0) where x increases towards right and y increases downwards.

Voxel (0,0) is circled in Figure 3-1 as the green rectangular block is the

reference block and it has

.xy = [(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)]. The workspace

is represented as a grid of voxels with (0,0) at the top left corner of the

reference block. .xy of all other blocks is calculated with reference to (0,0)

voxel.

(b) .z: .z is level from base. Base is at zero level so first layer of blocks will be

at level 1 i.e., .z = 1 e.g., in Figure 3-1 green and red blocks are at .z = 1

and yellow block is at .z = 2. .z is obtained from depth data corresponding

to the center pixel of the block. The value is converted into integer levels

e.g., 1,2,3, and so on. after gathering some data points in the play area.

Error correction in depth values may be needed since the camera is mounted

at an angle and depth values for same level varies across the y-axis. Thus, a

linear line is fitted on the gathered data points where error in depth varies

with y position of the center pixel. This reduces the error in measurement of

.z to great extend but sometimes in higher levels the error still exists and it

always mistakenly return higher level than required e.g., at level 6, system
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assigns value of 7 or 8 instead etc. To further reduce this error, we use the

information we already have in the model. Consider the above example: if

we get level 7 instead of level 6 for new block, while evaluating .overlap

and .overlap_dict (see below), if we get empty dictionary (means no

block under the new block), we decrease .z by 1 since it is impossible for

a new block to not be connected to any block underneath it if .z > 1. It

checks .overlap_dict again and continues subtracting 1 from .z till there

is at least one block or base of play area underneath the new block.

(c) .angle: .angle can have only two values: 0 or 90 degrees since the base

of play area is fixed and blocks can only be placed at two angles. Also, it

only matters if it is a 2 × 4 block. So, .angle is assigned a value of 0 when

4 voxels are along y-axis and 2 voxels are along x-axis and a value of 90

(90 degrees rotation) otherwise. For a 2 × 2 block it is always 0. As shown

in Figure 3-1, the green and red blocks are at an angle of 90 degrees while

yellow has angle of 0 degrees.

(d) .shape: .shape can have one of two values, either 1 or 2: 1 for 2 × 2 block

and 2 for 2 × 4 block.

(e) .color: .color can have one of four values: 1 for red color, 2 for blue, 3 for

green and 4 for yellow.

(f) .idx: .idx is a unique ID assigned to each block that is a part of assembly.

(g) .overlap: .overlap is a Boolean variable which is true when the block is

connected to another block below it, in the assembly apart from base of

play area.

(h) .overlap_dict: .overlap_dict is a python dictionary that contains in-

formation of all the blocks connected under the new block. Keys in this

dictionary are the .idxs of the connected blocks and associated with those
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keys are .xy voxels of the respective blocks that overlap with the new block.

For instance, as shown in Figure 3-1, the yellow block(.idx = 3) will have

.overlap_dict = {1 : [(1, 1), (2, 1)], 2 : [(1, 4), (2, 4)]} since it overlaps with

blocks of .idxs 1(green block) and 2(red block) whereas blocks 1 and 2 will

have empty .overlap_dict since there is only base underneath those.

2. .graph_dict: It is a dictionary that stores connections of each block with

other blocks directly connected on top of it using their .idx. For instance, if

the target structure has only three blocks and block with .idx 3 is connected

on top of blocks with .idx 1 and 2 (see Figure 3-1), graph_dict will be:

{1 : [3], 2 : [3], 3 : [ ]}. Just by looking at this structure we can tell that only

block 3 can be removed in the next step and not 1 and 2 since removing those

would require removing block 3 first. This dictionary helps us keep track of

removable blocks at any step.

3. .graph_dict2: It is another dictionary that stores connections of each block

with other blocks directly connected below it using their idx. This dictionary is

useful when we need to compare structures in the teaching mode. At each step,

it is used to find out all possible correct actions given the target structure. For

instance, if the target structure has only three blocks and block with .idx 3 is

connected on top of blocks with .idx 1 and 2 (see Figure 3-1, .graph_dict will

be: {1 : [ ], 2 : [ ], 3 : [1, 2]}. If in the current structure, during the teaching mode,

the user has only placed block 1 correctly.Looking at the example dictionary we

can tell, the only next correct action is to add a block similar to block 2 since it

does not have any block under it, which is not already added. Just by looking

at this dictionary, we can tell that 3 can only be added after both 1 and 2 have

been added in the assembly since 3 has to be on top of 1 and 2. Thus, this

dictionary helps us identify all the possible correct actions at any step.
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4. .pub: .pub is only used in the teaching mode. It is a ROS publisher for message

type String that publishes the feedback statement for robot to provide to the

user when a mistake is made.

Figure 3-1. Attributes of Assembly_Graph and Block explained: The reference voxel
(0,0) is circled in red. Green block has .idx = 1, red block has .idx = 2 and yellow block
has .idx = 3. Green and red blocks are at 90 degrees angle and yellow is at 0 degrees.
Green and red blocks need to be placed before yellow block. Yellow block is the only block
that can be removed in the next action.

For teaching mode, class Assembly_Graph, has an extra attribute of type

Assembly_Graph to pass the target dictionary that is saved in the learning mode.

Using these attributes various functions are defined within the class to add and remove

blocks, save and load the model, display the model and compare the models to flag
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errors. Feedback selection and passing the feedback statement to robot is done using

functions within this class as well.

Processing Pipeline

Figure 3-2 shows the work flow of the system for both modes. The RealSense® d435i

camera captures and provides a continuous RGB-D images stream. First of all, the

reference block is added to the model giving (0,0) coordinates for .xy of class Block as

described above. Once that is done successfully, the system scans for control command

in three control boxes: add, remove and adjust. As soon as a block is detected in

one of the control boxes, the system processes the play area for requisite action and

updates the model accordingly. If system is in the learning mode, on completion of

required action, the system again scans for new action and the cycle continues till

program is exited. If system is in teaching mode, on completion of requested action,

the system compares the current action with all possible correct actions (comparison

is made on add and adjust commands and not on remove command) and forwards

the errors with respect to every possible correct action to the feedback module. The

feedback module chooses a message based on errors and feedback strategy which is

published for the robot to convey to the user. Once this action is completed, system

starts scanning the control boxes again for next action request. The system exists

when the current model is same as target model. In the following sections, we describe

details of how each step in the workflow is accomplished.

Scanning Control Boxes

The continuous RGB image stream is divided into 4 fixed regions: add box, remove

box, adjust box and play area. The add, remove and adjust boxes are scanned

for next command after reference block is added. The RGB image from each box

is segmented using Hue, Saturation, and Value (HSV) based color segmentation
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(a)

(b)

Figure 3-2. Processing pipeline for perception module (a) for learning mode (b) for
teaching mode.

to create a binary mask for each of the four colors (red, green, blue and yellow).

Bounding rectangle is found for largest contour in the mask by using builtin functions

of openCV (findContous(arguments), max(arguments) and boundingRect(arguments)).

If a bounding rectangle is found for same color in same control box for 50 consecutive

frames, it is considered a control command. The color and shape (assigned by looking

at width to height ratio of the bounding rectangle) of the new block is noted, the

respective command (add, remove or adjust) is activated and system starts scanning

play area.
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Scanning Play Area

RGB-D continuous stream is scanned for new action as per the control command.

For add action, first of all, the RGB image is segmented using HSV based color

segmentation to create binary mask of color of new block (color is known from control

command). Now, this mask is compared with masks from previous frames and if

there is no change in the mask for n of consecutive frames (n= 50 for our system),

all contours whose bounding boxes have width of more than m pixels (m = 15 for

our system) and have the same shape as indicated by control box are considered as

possible additions. The x and y pixel coordinates of the center of each bounding box

is used to get depth (z) from the corresponding depth data. If the block is 2 × 4 block,

angle is calculated for each possible addition using ratio of width to height of the

bounding box. Next, all the possible additions are compared with the existing blocks

in the model (x,y,z, shape, color and angle). The contours that coincide with existing

blocks in the model are discarded thus leaving us with the contour of new block. This

block is then added to the model by passing its attributes (x,y,z,shape, color, angle).

The system keeps scanning the play area for new block till a block is added in the

model. Once the block is added, the system generates a flag indicating that the add

action is completed. For learning mode, each time new block is added .idx is counted

up. For teaching mode, if the new block added in the current model matches one of

the blocks in target model, .idx of the new block in the current model is assigned the

same value as in target model otherwise it is assigned a much higher value e.g., 21, 22,

23. This makes comparison of two models efficient and easy.

For remove action, mask of known color is created using HSV based color segmentation

and is compared with previous frames till there is no change for n consecutive frames

(n = 50 for our system). Contours with bounding boxes are calculated. From the

model, using a function .removable_blocks(), we can get the .idx of all the blocks

that can be removed from the current dictionary. We can also get the .idx of blocks in

27



the model of the shape and color associated with the remove command. Intersection

of these two lists, will give us possible removable blocks i.e., the .idx of the blocks

that are removable and of given specifications from remove command. If it is only

one block that lies at intersection of these two lists, we remove that block from the

model. If there are multiple blocks that can be removed, we look at the bounding

boxes of contours of known shape and check which blocks from the model are still

in the play area by comparing x, y, z and angle of the contours to the blocks in the

model. Discard the .idx of these blocks from possible removable blocks as these are

still present in the play area. There should only be one block left behind in list of

possible removable blocks, which is the one that has been removed from the play area

and placed in the remove box. System generates a flag indicating that the action is

completed successfully when the block is removed from the model. Remove action is

same for both learning and teaching mode.

For adjust action, remove action is completed followed by add action for the block

detected in adjust box. System generates a flag on completion of action and starts

scanning for next action.

Types of Errors Detected

Following types of errors are detected for new block to be added in comparison to all

possible correct blocks and passed to feedback module:

1. Shape: The shape of new block is different from the possible correct block.

2. Color: The color of new block is different from the possible correct block.

3. Orientation: The orientation of new block is different from the possible correct

block.

4. Level: The .z (z-level) of new block is different from the possible correct block.
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5. Position: The center of new block is different from the possible correct block.

29



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3-3. Simple 3D structures successfully completed in both learning and teaching
modes.
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(a) (b)

(c) (d)

(e)

Figure 3-4. Complex structures successfully completed in both learning and teaching
modes. Picture on left is front view and picture(s) on right are side view(s).
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Evaluation and Limitations

The system runs on Ubuntu 16.04.6 LTS (in dual boot with windows) in real-time

on a laptop PC with 5-core 2.3 GHz Intel® processor. It takes about 2-5 seconds to

update the model when required. Mostly, there are is noticeable lag in the system.

The system works fairly well in most of the cases. Some simple structures, which

can be recreated by looking at only one view, were successfully completed by us in

the learning mode and tested in the teaching mode as shown in Figure 3-3. Some

complex structures were also tested by the system are shown in Figure 3-4. These

complex structures require at least pictures of 2 views to recreate. These structures

were successfully detected and stored by our system. Various random structures were

also tried to look for possible errors and limitations of the system. Some of the errors

and limitations observed are:

1. Occlusion: Since only one camera is used to track the workspace, if the block

to be added or removed is not fully seen by the camera, it will go undetected

and cause errors as shown in Figure 3-5. Using multiple RGB-D streams from

various cameras can eradicate this issue.

2. Confusion: As explained above, the error in .z is fixed by intuitively lowering

the level until it overlaps at least one block underneath it. This fixes the .z for

time being for that block but when new block of same shape (or appearing to

be of same shape) is requested to be added, the overestimated z would stop at

a level higher than before thus re-adding that object thinking that it is a new

object at upper level as shown in Figure 3-6. Using better method for estimating

error in depth because of oblique camera or using multiple RGB-D cameras can

help reduce this error.

3. Due to changes in light source, sometimes, HSV based color detection is faulty

but it can be fixed by fixing the light source.
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4. The whole 3D structure is grounded on a base, thus not allowing the user to

move it around in space.

5. The blocks have been taped on edges (white or black tape depending on which

color contrasts better), as seen in figures, to assist color segmentation and enable

differentiation of same colored blocks. The boundaries allow different shapes

and multiple blocks of similar characteristics to be used for block building.

Figure 3-5. Example of occlusion: The circled 2 × 4 red block on level 4 will not be
detected if placed after the 2 × 4 blue block on level 6 because the camera cannot see it
fully.

Despite these limitations, the proposed perception module has some advantages

over similar systems. It is able to use two different shapes unlike in Gupta and
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Figure 3-6. Example of confusion: The 2 × 4 yellow block at lower level is mistakenly
added as a 2 yellow block because it appears to be a 2 × 2, even before the user placed the
top level 2 × 2 yellow block because the rectangle at .z = 4 originally had been assigned
.z > 4 and it was corrected to 4. Thus, now the visible portion of lower level yellow block
appears to be a new block added at level 5 (.z = 5).

colleagues’ system [63] which uses only 2 × 4 blocks. It can be extended to other

shapes e.g., 1 × 2 blocks easily. Also, it is able to use multiple blocks of 4 colors of

2 shapes unlike Jones and colleagues’ system [64] which uses only one block of each

shape (2 × 4 and 2 × 2) and 4 colors (total of 8 blocks). Our model representation is

robust and efficient. Such simple representation enables us to track an assembly which

has multiple paths towards correct solution. We are able to get all possible correct

next actions and all possible removable items at any step. It is not a step by step

process strictly since there can be multiple correct actions at any step unlike step by
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step guided system proposed by Gupta and colleagues [63]. Also, we use a reference

block for defining (0,0) for xy-coordinates, thus, the recorded graphs stay valid even if

the reference block is moved at the start of each 3D building task.

Feedback

Second module of the system is providing feedback in the teaching mode to help the

user finish the 3D block building task at hand. Feedback system receives various

types of errors in new block from each possible correct block. Based on the number of

possible correct blocks, number of errors from each possible correct block and type of

errors, the error on which the robot must give feedback is decided. Following rules are

followed:

1. If there is a possible correct block with 0 errors from new block, a brief statement

confirming the correctness of the action and suggesting to continue is provided.

We call these statements continuers.

2. If there is only one possible correct block and there is only one type of error,

that error is selected by default.

3. If there are two or more errors with respect to the only possible correct block,

following priority is considered while choosing the error to respond to:

Error in: Shape > Color > Orientation > Level > Position

4. If there are two or more errors with respect to two or more possible correct

blocks. The possible correct block with which there are least errors is selected

and the error priority is decided as following:

Error in: Shape > Color > Orientation > Level > Position

Two main questions to answer are: When to give feedback and what would the feedback

statement say. As far as When is concerned, for this exploratory study we provide
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feedback to user every time a mistake is made. Although due to delays in execution

of robot behaviour continuers might be skipped every now and then. To answer the

second question, we describe our framework for feedback in Table 3-I. We refer back

to various feedback practices described in literature (Table 2-I) while designing these

feedback statements. These statements are published to a rostopic for robot to convey

to the user.

Robot Behaviour

The third and last module of the system is introducing somewhat life-like movements

in the robot. The robot we used is Maki, a 3D printed robot with 7 servos and

controlled using arbotix_m controller as seen in the setup (Figure 1-1). Maki provides

verbal feedback when a mistake is made by the user. Microsoft® Azure text-to-speech

service is used to convert the feedback statement into voice. Apart from speech, we

programmed Maki to nod slightly to acknowledge the correct actions of user along

with continuers such as go on, continue and good etc. This is to remind user of its

presence and keep the user engaged. We have implemented another robot behaviour

known as referential gaze. In idle state, Maki seeks to make eye contact with user.

When the user makes a mistake, the robot looks towards the play area to redirect

user’s attention to the mistake (referential gaze), narrates feedback to the user and

then looks back towards the user to take requisite action to correct the mistake made.
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Error
type

Feedback
Type (refer to
Table 2-I)

Feedback Statement

Shape or
Color

8a. The shape/color should be _ instead of _
1. 7c. 8b. Hmm, are you sure you need a _ here?

3. 4. 7c. So, if this is a _ , what should be the next
step?

7c. 8b. What if we try a _ instead?

Orientation
8a. The orientation is wrong. You need to rotate

the block

1. 8b. Umm. Does this orientation looks right to
you?

7d. 7h. 8b. What if we rotated the block, Wouldn’t it
look better?

Level
8a. The level is wrong. Move the block to up-

per/lower level.

3. 8b. What if we moved the block to upper/lower
layer?

7c. 8b. Hmm, would you check if the block is at the
right height?

Position

8a. The position is wrong, Move the block _.

1. I think the block is not at the right position.
Would you try fixing it?

7d. 7h. Hmm, Let’s try moving this block around a
little bit to see if we get it right.

3. 4. 7c. If this is the right position for this block, think
what would be on top of it?

For all 7d. Let’s look at the given picture to see if this
looks alright.

No error 2 One of following continuers with a nod: Go
on. Continue. Hmm. Good. Right.

Table 3-I. Feedback statements based on selected error and inspired from literature as
summarized in Table 2-I.
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Chapter 4

Exploratory Study

We conducted a study to explore how various feedback strategies (implicit and explicit)

can impact user’s ability to self-regulate and scaffold learning process. We want to

understand if and how a robot tutor can be of assistance during a spatial visualization

task and how specific robot behaviour will impact user’s perception of the robot.

Various aspects of this exploratory study are explained below:

Participant

Our participant was an elementary-aged female student. She is currently in fourth

grade. Her past experience with technology in the classroom is limited to using tablet

computers. She has interacted with Maki (the robot) previously for a different pilot

study.

Task

For the sake of this exploratory study simple structures as shown in 3-3 are selected

as 3D block building tasks. The complex structures(Figure 3-4) require at least 2

different views to be completed and after initial interaction with the participant, we

found that these structures are too complex for her to follow even with feedback from

Maki. Thus, we use the simple structures for this study.
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Procedure

As seen in Figure 1-1, the setting of tasks consisted of Maki the Robot, playground

with blocks, play area and control boxes, a camera mounted on a tripod stand, an

iPad for displaying the target 3D block structure and the participant seated on a

chair.

First of all, the participant is seated. She is presented with a 3D structure to build with

blocks as a pre-test for the study. Pre-test is administered to develop an understanding

of her existing knowledge of block building. The task given as pre-test is shown in

Figure 3-3a. The experimenter explains the functionality of box controls and play

area, and asks the participant to build the given structure . Participant was aware of

the functionality partially because of similar interaction in early stages of this project.

This prior interaction was carried out to understand if the proposed playground with

control boxes is understandable by school-going kids and to analyze the complexity of

3D block building tasks that can be targeted towards elementary-aged students.

After pre-test, Maki introduces itself and explains what the participant will be doing

today and prompts her to start her first task, as shown in Figure 3-3b. During the

task, Maki provides feedback whenever a mistake is made. On correct actions, Maki

narrates statements encouraging to continue or affirming correctness of action e.g.,

Okay. Good. Go on. Continue. etc. so that the participant does not neglect the

robot in the process in case she is not making mistakes for long time. The run ends

when she successfully completes her task. Maki congratulates her on success and

she is asked to take a break before next task with a different target structure. Maki

welcomes her back to each next task and prompts her to start the task following same

instructions. Four more structures (Figure 3-3c, 3-3d, 3-3e and 3-3f) are done in next

tasks. After all the tasks, a post-test similar to pre-test but with different target

structure as shown in Figure 3-3g is taken. After last task, a post-study interview is
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conducted in which the experimenter asks the participant about her experience with

the system and Maki, whether she found Maki to be helpful or bothersome, whether

she would trust Maki to guide her in learning about the given task and if she felt

encouraged to continue the task.

Results and Discussion

There are three main sources of data: pre and post test, post- study interview and videos

of the interaction. The videos are analyzed by the author. Rudimentary qualitative

analysis is done on the video data. We analyzed the pre and post test, videos from 5

tasks and post-study interview qualitatively. Results are discussed here:

Pre and Post-test

The participant successfully completed both pre-test and post-test task. Both tasks

were of similar complexity. Overall, outcome for both the tasks was correct but for the

pre-test the participant used remove control once self-correcting her mistake. However,

in the post-test, she did not make any mistake and only used add control. Also during

the pre-test task, experimenter had to explain the functionality of adjust and remove

blocks once again. Since there was only one session and tests ended up being rather

simple, nothing can be concluded about learning gain from one session qualitatively.

Video Analysis

Many observations were made by the viewer of videos of interaction with Maki. The

main observations over the 5 tasks are summarized here:

1. The participant looks at Maki when it communicates with her for introduction

of task, feedback statements and robot actions (e.g., nodding and referential
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gaze). But as she goes further into the session, time of her eye contact with

Maki reduces while it is repeating the same statements at start and end of each

task. But, in the last task, the ending statement was different since Maki tells

her about end of her session and bids her goodbye. At the start of this ending

statement, she was looking down but as soon as the statement was different from

the previous ending statements, she turned her gaze towards Maki to process

new information. It is interesting to note that she stopped looking at Maki and

started listening passively when it said predictable and repetitive statements

but as soon as it narrated new information, she paid full attention to Maki.

2. She follows what Maki is asking or suggesting her to do. For instance, during

introduction, when Maki says to look at the screen for picture of the target

structure, she looks at the screen. When Maki narrates continuers like Go on,

continue, and so on. she moves on trusting Maki’s suggestion that she is correct.

She considered nodding of Maki as confirmation of her being correct as well.

3. She looks at robot after every action for confirmation if she did it right or not.

Sometimes, she would skip looking at robot but as soon as the robot nods and

says a continuer, she would look at robot and move on. Sometimes if robot

would not respond to her action, she would wait a couple seconds looking at

robot for a response to her action. She would move on if she did not get a

confirmation assuming that she did it right. This suggests that if you provide

frequent feedback, the user can get accustomed to it and wait for the feedback.

Also, it is interesting to note that the lack of feedback made the participant

assume she was doing alright. She trusted Maki to point out her mistake.

4. During task 4, even though Maki was congratulating her on her successful

completion of task, she was looking at the picture of the target structure. She

mentioned it to the experimenter that she thought there was still one more block
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left to be added in the structure. This might be because of few glitches in the

same task. The system made a wrong detection because she took too much time

to fix the block and it got detected midway and robot hinted to look at the

picture again to see if it is alright. While adjusting again, the robot mentioned

that the position is wrong and asked to move the block upwards. This confused

the participant since she was placing the block at right place. Experimenter

interfered and suggested her to adjust the block again. After adjust action,

Maki nodded and suggested to move on since system was able to correct its

wrong detection during adjust action. This shows that the participant did not

blindly trust Maki and since it made a mistake earlier in the same task, she was

skeptical of Maki congratulating her on completion of her task and wanted to

make sure for herself.

5. Apart from task 3, Figure 3-3d, she did not make mistake in any other task

suggesting that the simple tasks (Figure 3-3) are easy enough for kids of her age

group.

6. Task 3 mistakes: She made 2 mistakes in task 3. The target structure is shown

in Figure 3-3d. The first mistake was that she used a yellow rectangular block

instead of a square one at the fourth step. As it is clear from the picture of the

target structure, the structure has a possible confusion i.e., a rectangle of yellow,

instead of a square of yellow and a square of blue at level 2. Maki responded

saying "Are you sure you need a rectangle here?". She inferred that the hidden

block is blue square not continued yellow rectangular block and she fixed her

mistake by removing the yellow rectangular block and replacing it with two

square blocks of yellow and blue color. The second mistake was that she placed

the blue rectangular block at level 3 before the green square block at the level 2.

So, Maki pointed out that the shape should be a square instead of a rectangle.
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This feedback statement was not very clear i.e., the blue rectangular block at

level 3 is the correct block but green square needs to be added at level 2 before

that, she corrected her mistake anyways. This implies that merely pointing out

that a mistake has occurred nudged the participant to correct herself. Thus, it

is safe to say that the participant received feedback from the robot positively

and self-corrected her mistakes.

Post-study Interview

To support observations from the video analysis, we conducted a post-study interview.

We asked the participant questions about her overall experience, her perception of

Maki, her comfortability with the setup, her feelings about Maki’s appearance and

behaviour. This interview revealed lot of interesting information. Some of the remarks

from the participant and our interpretation of these remarks are detailed below:

1. Fun and engaged: She thought that the overall experience was fun despite

some of the bugs and wrong detections. She also said that she would enjoy more

sessions with Maki because it was fun. She expressed that if she had to do the

tasks by herself, it would be boring.

2. Fascination: She was fascinated with Maki since she does not work with robots

usually so she thought it was fun. She would prefer working on similar tasks with

a robot over a human because she finds that humans can be boring sometimes

and "humans just do not work with other humans".

3. Helpfulness: She perceived Maki to be cool and helpful because she noticed

that whenever she was correct, the robot nodded and said Go on, continue etc.

and whenever she was wrong, it helped her with a hint. She expressed that she

would like more sessions with Maki and she learnt a bit about block building

task and she will be better at it now. The session boasted her confidence in her
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ability to work on similar tasks. She expressed that without Maki it would not

be easy to complete the tasks.

4. Teacher vs Peer: She found Maki to be acting like a friend when it gave hints

to help her through the task but she thought of Maki as a teacher when it told

her if she was wrong or right. This suggests that direct feedback, e.g., using the

word wrong, creates impression of Maki as a teacher while helpful hints created

more of a friend-like personality.

5. Trust: She trusted the robot but not blindly. She trusted Maki when it provided

feedback on her mistakes. At some point, she thought she was right and the

robot was wrong. Even if the robot made mistakes, she was okay with it because

Maki was not a human and she could trust it because it was right sometimes.

Maki’s mistakes in providing feedback would not stop her from working on

further sessions with Maki.

6. Scaffolding and self-regulation: When Maki used the word wrong, her

emotions were hurt. She said it made her sad but when Maki acted in a friend-

like manner and gave suggestions without using the word wrong, she felt better

and she knew that she can correct her mistake. She found Maki to not judge her

for her mistakes unlike humans. This is an interesting indication that using softer

words to suggest mistakes might have resulted in the participant scaffolding and

self-regulating her learning process.

7. Clarity of feedback: She found Maki’s remarks to be loud and clear. She

understood her mistakes from feedback statements and was able to fix those.

8. Frequency of feedback: The participant was asked if she found Maki to be

excessively talkative, annoying and interrupting her. She said that this was not

the case. In fact, whenever Maki would not respond she was concerned that it

44



should have said something.

9. Appearance and robot behaviour: The loud noise made by robot while

moving its head was scary but not in the sense that it would harm her since

Maki has no limbs. Whenever Maki moved, she was looking forward to hear

something from it. It is interesting to note that robot behaviour such as nod

and referential gaze are interpreted as robot’s intent to communicate with the

participant. The participant was also able to distinguish the meaning of nodding

(correct action) and referential gaze (mistake made). Maki’s voice was perceived

neutral and non-expressive. In her words, it was lacking highs and lows. It did

not sound excited or if anything mattered to it. She was of the opinion that

Maki should at least be expressive. She did not expect Maki to have emotions

as such.

Design Implications and Suggested Improvements

This exploratory study has helped understand the effectiveness and drawbacks of our

perception system, feedback strategy and robot behaviour. It has shed light on the

potential of robot assisted 3D block building to augment spatial visualization skills

in elementary-aged students using implicit feedback strategies to suggest mistakes

made in place of explicit corrective feedback. 3D block building task is found to

be more engaging and interesting in the presence of the robot. The robot assisted

the participant to correct her mistakes through frequent feedback. The participant

anticipated feedback from the robot after every action and it concerned her if the

robot did not respond. Implicit feedback, such as suggestion, hints and giving her

second chance to correct herself, created positive emotions such as confidence in the

participant and helped her self-regulate her learning process. Implicit feedback had

clarity regardless of not putting the exact mistake in words. Using strong words such
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as wrong had a negative impact on the participant thus, suggesting explicit corrective

feedback can harm self-confidence. The robot was able to build some level of trust

despite a couple of mistakes on its part. The robot was perceived as a teacher when

it communicated whether the action of the participant is right or wrong whereas it

was considered a friend when it gave suggestions and hints to assist the participant.

Robot’s behaviour i.e., nodding and referential gaze were easily distinguishable. New

statements or actions by robot would get the participant’s full attention whereas

repetitive statements caused participant to go into passive listening.

This exploratory study will enable us create a framework for a user study to evaluate

effectiveness of our improved system and study design. Following are the suggested

improvements that will enable us in resolving certain issues of our system and get

it ready to launch a full-fledged study to analyze learning gain, self-regulation and

scaffolding ability of students and their perception of a robot tutor in one-on-one

session while conducting a 3D block building task to augment spatial visualization:

1. Two factors need to be part of elaborated study: Type of feedback (implicit vs

explicit) and frequency of feedback (when to give feedback). Although given the

results from this study, implicit indication of mistake implied better ability to

self-regulate and friendliness and likability of the robot, data is too less to make

a conclusion. Similarly, the participant preferred frequent feedback in this study

but nothing can be said about its effects on learning gain. It is possible that

interrupting frequently to provide feedback might make the user too dependent

on the robot to figure out when and what mistake is made. Nothing conclusive

can be said about these two factors with limited interaction data. These two

factors need to be explored further in detail.

2. The perception system needs to be improved to increase credibility of feedback

provided by the robot.
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3. To be able to evaluate learning gains, ability to scaffold and self-regulate, it

would be better to have multiple sessions over a longer period of time since

spatial visualization skills a are hard to quantify in one session. Also, these

skills improve over time and we are interested in longer-term effects of feedback

strategies and robot assistance on spatial visualization.

4. Designing the 3D target structures needs to be guided by experts in the field

e.g., mathematics teachers, psychologists, and so on. Complexity of pre and

post-test needs to be adjusted as well. Standard tests may be conducted to

evaluate learning gain in spatial ability.

5. Introductory and ending statements provided by the robot at the beginning and

end of each task respectively should be made less repetitive to better engage

users.

6. Loud noises of robot’s joints while moving should be minimized to avoid sense

of fear in users. Robot voice is neutral and non-expressive in the current system.

It could be made more human-like. The robot should sound excited, concerned,

happy or disappointed etc.

Suggested improvements in the proposed system will enable us to progress in this area

of research. More studies about the tradeoff between implicit and explicit feedback,

effectiveness of various types of implicit feedback and its personalization and right

timing for intervention and impact of other various types of feedback strategies etc.

will follow.
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Conclusions and Future Work

We have demonstrated a system that tracks 3D block building task in real-time. In

the Learning mode, the system records and stores the assembly process through block

additions, removals and adjustments done by the expert (experimenter or teacher etc.)

In the Teaching mode, a user is prompted to construct a 3D structure provided as

a 2D picture. It keeps track of assembly process and detects mistakes made by user

and based on those mistakes it provides a selected feedback statement to the user.

The system is able to detect shape, color, orientation, level from base and position

errors of current block from all possible correct actions. The feedback statements that

we have employed mostly fall under the category of implicit and explicit feedback.

The feedback is narrated by a robot, Maki. Maki uses nodding with continuers or

referential gaze with feedback statements based on type of error that has occurred to

inform the user if the user is doing alright or has made a mistake respectively.

A brief exploratory study depicts the potential of robot assisted 3D block building

task. System was easy to used despite few glitches. The participant perceived Maki to

be helpful and essential for task completion. She trusted Maki to guider her despite a

couple of poor feedback statements. She was critical of Maki’s mistakes indicating

absence of blind trust. Maki was perceived as teacher when it used direct feedback

whereas it was considered friendly when it presented useful hints and suggestions.

Using softer words to implicitly suggest that the participant has made a mistake

helped the participant gain confidence in her ability to correct her mistakes by trying

again. The feedback statements were loud and clear for the participant to follow easily.
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The participant became accustomed to frequent feedback. Maki’s appearance and

behaviour has room for improvement, although, its intentions were easily interpreted

by the participant. Predictable statements shifted the participant from paying full

attention to listening to Maki passively.

There are some limitations of the perception system that can be improved on. We

would like to extend this system to work with more shapes, sizes and colors of blocks

which is not hard since our system is flexible to include different kinds of blocks.

It would be interesting to mover towards algorithms that can handle addition and

removal of multiple blocks at a time and allow for merging sub-assemblies. To achieve

this, changes might be needed in the model representation. Eventually, it would be

interesting to see if similar framework can be extended to more complex building tasks

that are not limited to voxelized space.

The exploratory study has opened up avenues for multiple studies. One of many

possibilities is a study designed to evaluate the impact of implicit vs explicit feedback

on self-efficacy and learning gain of school-going students, and their perception of such

robot tutor while working on a spatial visualization task. Another multi-session study

over a long period of time to evaluate the effect of personalization of feedback strategy

on scaffolding and self-regulations for school-going kids for spatial visualization tasks

such as 3D block building would prove to be beneficial. It would also be interesting to

study the effect of timing, frequency and type of feedback on user’s learning gains,

self-regulation and perception of robot. Analyzing effect of various non-verbal robot

actions such as nodding, referential gaze, hesitation, and so on, as a source of implicitly

communicating errors instead of narrated feedback statements could lead to interesting

findings. We hope this initial work inspires future research in the field of social robotics

and education.
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