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ABSTRACT
Robot errors occurring during situated interactions with humans
are inevitable and elicit social responses. While prior research has
suggested how social signals may indicate errors produced by an-
thropomorphic robots, most have not explored Programming by
Demonstration (PbD) scenarios or non-humanoid robots. Addition-
ally, how human social signals may help characterize error severity,
which is important to determine appropriate strategies for error
mitigation, has been subjected to limited exploration. We report
an exploratory study that investigates how people may react to
technical errors with varying severity produced by a non-humanoid
robotic arm in a PbD scenario. Our results indicate that more severe
robot errors may prompt faster, more intense human responses
and that multimodal responses tend to escalate as the error unfolds.
This provides initial evidence suggesting temporal modeling of mul-
timodal social signals may enable early detection and classification
of robot errors, thereby minimizing unwanted consequences.
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1 INTRODUCTION
While robots promise to positively transform human work and
living, they are bound to make errors resulting from imperfect sens-
ing, reasoning, and acting. These robot errors could cause serious
physical damage to the surrounding environment and impair peo-
ple’s trust and willingness for adoption. As we continue to develop
and integrate robots into human environments, it is important for
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Figure 1: Overview of the experimental conditions and task
used in our study, and examples of behavioral responses, ex-
hibited by participants, to unexpected robot errors.

robots to be able to identify possible errors, allowing for apply-
ing subsequent appropriate mitigation strategies to minimize the
impact and enabling learning from those errors.

To identify robot errors during situated interactions with peo-
ple, prior research has investigated how people may respond to
a robot’s technical and social errors (e.g., [10, 13]) and explored
how social signals may be used for error detection [28]. To date,
research has mostly used anthropomorphic robots when study-
ing human responses to robot errors; not much has explored how
people would exhibit social signals in response to errors produced
by non-anthropomorphic robots (e.g., manipulators) that are com-
monly deployed in workplaces, such as factories. Additionally, how
human responses may be used to characterize robot errors, such as
severity level, is needed for choosing appropriate error mitigation
and has room for exploration. This is especially true when it comes
to Programming by Demonstration (PbD) scenarios, which have
not been examined in this context.

In an effort to fill this knowledge gap, this paper reports an ex-
ploratory study of how humans respond to robot errors of varying
severity. We contextualize our exploration in a kinesthetic teaching
setting in which a human provides task demonstrations by directly
maneuvering a robotic manipulator (Figure 1). We note that this
setting of human teaching robot through physical demonstration is
particularly suited to ensure participants have comparable mental
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models of the robot’s capability, which is key to studying social
responses to robot performance [19]. This setting is also different
from prior research that focused on either social interaction scenar-
ios or settings that involve robot guiding human in task completion.
In our study, we manipulated robot error severity and measured
participants’ response time and intensity. Our results indicate that
more severe robot errors may prompt faster and more intense hu-
man responses. Next, we provide a brief review of relevant prior
research that motivates our exploration.

2 BACKGROUND AND RELATEDWORK
Errors are inevitable and commonly found in autonomous robot
systems [6, 27]. A recent report shows that a robot makes a mistake,
negatively impacting task success, every 6 to 20 hours in the field [6].
To better understand and study robot errors, various classifications
have been proposed (e.g., [5, 6, 13, 20, 27]). Our exploratory study
was focused on technical errors [13, 20].

Though results from prior research agree that robot errors neg-
atively impact task performance and human safety, the effects of
robot errors on people’s perceptions of the robot—especially per-
ceived trustworthiness—are inconclusive. While some evidence
suggested that robots that did not make mistakes were rated signif-
icantly more trustworthy than those that did [24], others indicated
minor to no statistical significance that errors negatively impacted
trust [9, 21]. It was further found that participants liked the robot
more when it made mistakes during interactions than when it inter-
acted flawlessly [21], commonly referred as the pratfall effect—an
increase in likability due to errors [1].

Mixed results were also found in studies that explored the impact
of robot error severity on human perceptions. Through a survey
and storyboard-based simulation, participants’ reactions to low
and high error severity were found to be significantly different;
moreover, error severity was correlated with loss of trust in the
robot [4, 23]. On the other hand, people’s trust of robots was found
to have no correlation with error severity when humans and robots
worked in teams [29]; however, people were more likely to assign
blame, usually to themselves or the team as a whole, when expe-
riencing a high severity error than a low one. Error severity, as
manipulated by imposing time pressure, was found to influence par-
ticipants’ verbal and gaze behaviors [18]. Our study explored three
levels of error severity manipulated by varying task performance
and focused on richer social signals, including facial expressions.

Despite the aforementioned mixed effects, errors generally cause
negative consequences. Reliable and timely identification of errors
is key to successful error mitigation and recovery. Various strate-
gies have been researched to mitigate the impact of robot errors,
including asking for help (e.g., [16]) and exhibiting human-like
responses such as apologizing (e.g., [12]). If errors can be identified,
even after they happen, and the robot employs the appropriate re-
covery strategy, a positive relationship between people and robots
can be formed [31].

A reasonable indicator of errors are social signals [30] as people
have been shown to exhibit more behaviors during error situations
than error-free ones [5]. In addition, people respond differently
when facing social norm violations and technical failures; in par-
ticular, technical failures generally resulted in fewer social signals

and faster reaction times [20]. Prior works have demonstrated how
social signals such as upper body movements (e.g., [28]), gaze (e.g.,
[2, 3]), and gestures (e.g., [3]) can be used to detect errors effectively.
It is worth noting that most of these prior works used human-like
robots, which have been shown to elicit different responses to fail-
ures than non-humanoid embodiments in social error scenarios
[17]. Furthermore, prior research has mostly focused on social in-
teraction scenarios or settings where robots serve as experts or
leaders to guide humans through tasks. These settings implicitly re-
lied on participants’ existing expectations of robots and thus could
possibly influence the participants’ social responses. In our study,
we explicitly control for people’s mental models of the robot by
using a kinesthetic teaching scenario in which participants had
a practice session to program the robot and formed comparable
mental models of the robot’s capability.

3 EXPLORATORY STUDY
In this section, we describe an exploratory study that sought to
address two research questions: Would people respond socially to
robot errors produced by a non-anthropomorphic robot manipula-
tor? How may the social responses, if any, be used to characterize
error severity? Answers to these questions will help develop col-
laborative robots of various forms to interact closely with people.

3.1 Experimental Task and Error Manipulation
The experimental task consisted of waypoint-based kinesthetic
demonstration of a pick-and-place task using a Kinova Gen3 ro-
bot arm (Figure 1). We designed three conditions corresponding
to three levels of error severity: low severity (failing to pick the
object), medium severity (placing the object at a wrong location),
and high severity (dropping the object during the transportation).
The severity manipulation was based on the impact that the error
has on the immediate surroundings.

3.2 Study Procedure
Participants were randomly assigned to one of the conditions and
asked to program a practice pick-and-place task before the actual
experimental task. The practice task was to ensure that the partic-
ipants knew how to program the robot and that they established
comparable mental models of the robot (i.e., the robot was able
to execute their program flawlessly). For both the practice and ex-
perimental tasks, participants needed to ask the experimenter to
run their robot programs. After confirming confidence in program-
ming the robot and programming at least one flawless practice
run, the participants were instructed to complete the experimental
task. Participants then programmed the experimental task through
kinesthetic demonstration using waypoints and signaled to the
experimenter to run the program. At this time, rather than running
the participant’s program, the experimenter executed a program
with a pre-programmed error. The entire interaction was recorded
to capture how the participants reacted to the robot’s erroneous
execution of their programs. The participants were fully briefed
on the premise of the study and the deception that was involved
after the experiment had finished. Participants were then asked to
watch their recording and comment on their reaction as part of



an open-ended retrospective think-aloud [8]. They also filled out a
Big-Five Personality test questionnaire [7] and basic demographics.

3.3 Behavior Analysis and Annotations
To understand social signals exhibited by the participants due to the
unexpected errors, we annotated the interaction videos for behavior
analysis. A primary coder, who had complete knowledge of the
errors and when they occurred during the experiment, performed
the coding using VCode [11]. The coder began by identifying the
first possible time when the error for each video could be recog-
nized and then annotated behaviors that were a result of the error.
In particular, annotated behaviors included verbal (noises or talk-
ing), laughing, smiling, looking away from the robot towards the
experimenter, scrunching of face, brow moving, and head moving.
Based on these annotations, we defined reaction time and reaction
intensity, as described below.

Reaction Time (Overt). The reaction time of overt manifesta-
tion of the error is the time between when the coder sees the initial
overt visual signal of the error and the initial social signal response
displayed by the participant. It is the time between the first possible
moment the participant could have recognized the error and when
the participant reacted to the error. The visual identifier for each
type of error differed. The low severity error (robot failing to pick
up the object) was signaled by the robot arm gripper moving away
from the object without closing the gripper. The medium error (ro-
bot placing the object at a wrong location) was indicated by setting
the object on the table. The high severity error (robot dropping the
object in the middle of the task) was marked by the opening of the
gripper in the middle of the robot arm movement.

Reaction Time (Covert). In addition to overt reaction time, we
measured covert reaction time, which is the time between when
the coder could recognize the error in the program and the first
social signal shown by the user. For low and high severity errors,
this quantitative metric is the same as the overt version. However,
for the medium severity error, which spanned a longer duration,
we observed that some participants seemed to be able to detect the
error (deviation in trajectory) before the robot placed the object at
a wrong location.

Reaction Intensity. We defined intensity by the number of
social signals exhibited as a reaction to the error. For example, if
the participant reacted to an error with this sequence: brow raising,
scrunching, looking towards the experimenter, smiling, issuing a
verbal comment, and looking towards the experimenter, then the
intensity of the reaction would be six (Figure 2).

3.4 Participants
Seven participants (2 female, 5 male) were recruited for this ex-
ploratory study. Of the participants, two were assigned the low,
two the medium, and three the high error severity conditions. Par-
ticipants’ ages ranged from 21 to 25 (M = 23.17, SD = 1.47). All
participants had an engineering background and reported to have
considerable experience with robots (M = 4, SD = 1.41 in a 5-
point Likert scale with 1 being no experience and 5 being a lot of
experience) and moderate experience with programming robots
(M = 3.8, SD = 1.30).

Table 1: Social signals observed in our exploratory study.

Social Signal Average Duration (s) (SD) Occurrences

Verbal
Look Away

Smile
Head Movement

Laugh
Scrunch

Brow Raise

1.45 (0.96)
–

5.47 (2.33)
1.30 (0.94)
0.89 (0.84)
0.58 (0.07)
2.03 (2.09)

9
7
6
4

3
3

2

3.5 Findings
A total of 34 social signal instances were identified over the seven
interaction trials, pertaining to seven different classifications of
behavior (Table 1). All errors resulted in social responses from par-
ticipants with verbal responses, looking away from robot towards
experimenter, and smiling being most frequent.

Reaction Times. The average overt reaction time was 0.94 sec-
onds (SD = 0.62); covert was 1.31 seconds (SD = 0.94). Grouping re-
action times by severity, the averages for overt reaction times were
1.31s for low severity (SD = 1.28), 1.04s for medium (SD = 0.14),
and 0.63s for high (SD = 0.9), indicating a trend consistent with
higher error severity producing faster reactions.

Reaction Intensity. On average, the number of reactions for
these errors was 4.86 (SD = 1.35). When intensity was broken down
by error severity, the average for low severity was 4 (SD = 1.41), for
medium severity 4.5 (SD = 2.12), and for high 6 (SD = 0), indicating
a trend compatible with more intense reactions being associated
with more severe errors.

4 DISCUSSION
In this study, we explored the impact of error severity on multi-
modal human responses in a human “teach” robot scenario. Our
exploration revealed a potential relationship between error severity
and reaction time and intensity of response. Below, we discuss our
study and results, and their implications for developing collabora-
tive robots capable of detecting errors during situated interactions
with people.

Manipulation of Mental Model. Our study involved an ex-
plicitly controlled manipulation of the participant’s mental model
specifically exploring the relationship between error severity and
reaction. This setup is different from prior studies where partici-
pants’ mental models were implicitly assumed appropriate based
on the scenario (e.g., [10, 20]). Our explicit, direct manipulation
allowed for more pointed results pertaining to errors and human
behavioral responses. For example, in a retrospective think-aloud,
one participant noted “for the error part, first of all, I was ... kind of
surpris[ed] because based on my first experience [practice task] I think
it [the robot] worked perfectly and this robot had built a reputation in
my mind. And after the second [actual task], I was like that off, ‘like
seriously’.” What the participant was referring to is that the practice
task allowed for him to form a mental model that the robot would
correctly execute his correct program. However, when the error
did occur in the actual task execution, the participant felt surprised
and thought that perhaps the robot was inaccurate.

Social Responses to Non-anthropomorphic Robot. As noted
before, all participants reacted socially to the unexpected robot



raising eyebrow scrunching looking away smiling verbal comment:
“definitely got close...”

looking away looking at
the object

focusing on
task action

did not close gripper first response
response escalationerror occurred

Figure 2: Example of one participant’s escalation of behavior after an error of low severity occurred.

errors. This observation contradicts the results from prior studies;
specifically, Mirnig et al. noted that only 71% of a similar type of
errors (right action gone wrong) resulted in social signals [20]. Our
observation can possibly be explained by the “Media Equation”
theory, which suggests that people react to technologies as they
would in human-human social relationships [22]. However, we
note that a limitation of this study was that the experimenter was
present in the room, which prior work had shown to increase the
number of non-verbal signals exhibited [10]. The most frequent
social signals observed in our study, namely looking away from the
robot towards the experimenter, talking, and smiling, appear to be
consistent with prior work [21]. The behavioral response of looking
away from the robot towards the experimenter generally happened
after robot motion ended and was a sign of participants looking for
confirmation and/or error resolution from the experimenter [10].

Escalation of Behavioral Response. In addition to a possible
relationship between error severity and reaction time and intensity,
we observed how behavioral responses may shift and “escalate"
as an error unfolds. As exemplified in Figure 2, a participant’s
initial reaction tended to be more subtle (i.e., brow movement) and
later reaction being more pronounced (i.e., talking in full sentences).
While some participants did talk or have short verbal responses (e.g.,
“What!”) during the robot movement, they oftentimes “waited” until
the end of the robot arm movement to look away from the robot
and talk in full sentences. This observation of response progression
augments previous findings of frequent combinations of social
signal sequences [20]. The sequence of responses and “velocity” of
escalation could be modulated by the participants’ personalities.
Our future work will investigate how temporal modeling of the
sequence and escalation of behavioral responses may enable early
identification of robot errors.

Expert vs. Novice Participants. Expert and novice participants
appeared to have an overall difference in responses.While the group
of participants had, as a whole, considerable experience with robots
and their programming, their distribution of experience was varied,
with two participants having little experience and three having a
lot of experience with robots. Notably, three expert users had facial
responses to the trajectory of the robot being different than what
they had programmed before the error overtly manifested. During
one of the expert participant’s think-alouds, he commented: “Did
you see what I did with my mouth? I think that is when I noticed
that the trajectory is a bit different from what I programmed. But
I’m not so sure that happened and I was a bit confused ... Later I
confirmed there was a mistake.” The expert participant was able to
identify that there was an error due to trajectory abnormalities that

was later confirmed by the actual designated error. This insight
indicates that even lower severity errors (e.g., slight deviation of
an expected trajectory) than the ones explicitly tested in our study
can trigger a visible social signal response. The trajectory deviation
did not seem to be noticed by the novice participants.

Personality and Freezing Effect. Personality might shape re-
sponses exhibited. While the average reaction time for the study
was 0.95 seconds, there was one participant whose reaction time
was much longer, at 2.21 seconds. When asked why, the participant
said: “I feel like I recognized the error when the block dropped. It
was actually, I’m thinking did I make some mistake or something?
So yeah, I was thinking before reacting.” In other words, while the
participant had noticed the error much earlier on, the participant
did not react because they were trying to reason about the cause
before reacting. This participant is relatively introverted (2.18 in a
5-point Likert scale), based on the Big Five Personality Test. This
notion of thinking before reacting may be related to the freezing
effect reported in previous work where some people stood still after
the beginning of an error situation to a behavioral response [10];
the apparent lack of a response was considered a “response to the
stress induced by the error situation.”

Implications for Developing Collaborative Robots. Findings
of our exploratory study illustrate how reaction time and intensity
may be leveraged to estimate error severity. Moreover, understand-
ing the sequence of behavioral responses would allow the robot to
recognize what stage of reaction the user is in, thereby empowering
the robot to tailor its response to the impact of the error as well as
user agitation. In addition, encoding information about the human
interactant, such as experience with robots and personality, may
further enable the robot to adapt error detection sensitivity or size
of window to look for reactions to errors.

Future work can extend to additionally include eye gaze inmodel-
ing human states, which prior works have suggested to be indicative
of robot states (e.g., errors) during situated interactions. Research
has shown how gaze cues may be used to understand human in-
tent (e.g., [14]) and robot actions (e.g., [26]), as well as how they
can be utilized to enhance robot learning from human demonstra-
tion [25], detect errors [2, 3], and facilitate efficient human-robot
collaboration [15]. All in all, multimodal human signals present
opportunities to enhance human-robot interaction.
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