
  

  

Abstract— Assistive robotics holds the promise of bettering 
the lives of countless people throughout the world. As robots 
become more complex, the degrees-of-freedom for controlling 
robotic systems is rapidly outpacing the degrees-of-control that 
can be supplied by humans via conventional interfaces. In this 
paper, we describe a novel paradigm, amplified control, that 
strives to capture the adaptability of teleoperation while also 
leveraging the reduced user burden offered by shared control 
approaches. The novelty of this approach is that machine 
intelligence amplifies human intelligence for robotic control as 
opposed to replacing it, supplementing it, or augmenting it. If 
successful, our novel control paradigm will lower the barrier of 
entry (e.g., overcoming physical limitations and lessening 
cognitive load) for people to operate complex robotic systems 
for assistive robotics as well as other domains. 

I. INTRODUCTION 

Assistive robotics holds the promise of bettering the lives 
of countless people throughout the world including 
individuals with debilitating conditions, individuals 
recovering from injuries, and the elderly. As robots become 
more complex, the degrees-of-freedom for controlling robotic 
systems is rapidly outpacing the degrees-of-control that can 
be supplied by humans via conventional interfaces. Machine 
intelligence offers the potential of lowering user burden by 
making robots more self-sufficient. However, the current 
state of machine intelligence lacks the ability to infer and 
reason, leading to robots that cannot adapt to novel 
circumstances (i.e., novel tasks and/or novel environments). 
This introduces a tradeoff in the design space between 
increasing the system’s adaptability to novel circumstances 
and reducing the user burden to operate the system. This 
tradeoff is particularly relevant to assistive robotics. As an 
assistive device, robots need to be robust to the novel 
circumstances that accompany humans throughout their 
activities of daily living. At the same time, assistive robotics 
strives to make robotics available to anyone. In fact, often 
with assistive robotics, the users’ physical and/or cognitive 
abilities are limited. 

In this paper, we describe a novel paradigm, amplified 
control, that strives to capture the adaptability of 
teleoperation while also leveraging the reduced user burden 
offered by shared control approaches (Fig 1). We call this 
new paradigm amplified control in reference to its ability to 
amplify a small number of input channels in order to control 
a larger number of robotic command signals. Amplified 
control is an extension of teleoperation that expands the 
user’s degrees-of-control beyond a 1-to-1 mapping to the 
robot’s degrees-of-freedom. Instead, machine intelligence is 
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used to amplify a lower degree-of-control in order to operate 
a higher degree-of-freedom robot. However, unlike shared 
control approaches, the user remains in complete control of 
the robot. This makes it possible for a user to “teleoperate” a 
high degree-of-freedom robotic system with lower degrees-
of-freedom of input. The novelty of this approach is that 
machine intelligence amplifies human intelligence for robotic 
control as opposed to replacing it, supplementing it, or 
augmenting it. If successful, our novel control paradigm will 
lower the barrier of entry (e.g., overcoming physical 
limitations and lessening cognitive load) for people to operate 
complex robotic systems for assistive robotics as well as 
other domains. 

With amplified control, the user generates a small number 
of control channels and machine intelligence amplifies these 
inputs in order to control a higher degree-of-freedom robot. 
Amplified control is most similar to teleoperation [1] and 
supervised control [2]. Like teleoperation, the user maintains 
control of the robot throughout the lifecycle of the task. This 
enables the robot to be used under novel circumstances (with 
the caveat that a level of machine intelligence is contained in 
the amplification function). At the same time, amplified 
control shares similarities with supervised control by 
decreasing user burden. However, unlike supervisory control, 
control of the robot is never handed over to the machine 
intelligence.  

In addition to assistive devices, robotic arms have shown 
benefits to a range of domains including manufacturing, 
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Fig. 1. Our approach to amplified control uses deep neural networks and 
consists of two steps: (A) training a deep neural network, and (B) replacing 
the front half of the network with a human user. 



  

robotic surgery, and extreme environments such as space, 
undersea, and bomb disposal. The goals of amplified control 
make it particularly attractive to the unique priorities of 
assistive robotics.  

II. APPROACH 

Our approach to amplified control uses deep neural 
networks and consists of two steps as described in Fig. 1. 
Initially, a deep neural network is trained as a fully 
autonomous agent to perform a specific task within our 
environment. In Fig. 1.A, this network is a control policy that 
takes a six-dimensional state space as input and outputs a 
four-dimensional action space. The critical aspect of this 
concept is that we purposely design a bottleneck layer into 
the network architecture. The number of nodes in the 
bottleneck layer must be less than the number of nodes in the 
output layer (i.e., the dimensionality of the action space). In 
Fig. 1 the bottleneck layer has two nodes and represents two 
latent variables of the policy function.  

In the second step of our approach we divide the trained 
neural network at the bottlenecked layer and discard the 
portion of the network that precedes the bottleneck layer. The 
bottleneck layer becomes the new input layer to our network. 
We maintain the back half of the trained network that 
converts the bottleneck layer to the output layer. In Fig. 1.B, 
a user supplies two inputs (i.e., the two latent variables in the 
bottleneck layer) and the network translates those inputs into 
a four-dimensional action. It is important to highlight that in 
our initial designs these latent variables are uninterpretable. 
That is, the latent variables are simply real numbers between 
-1.0 and 1.0 without any meaning. We speculate that humans 
will be able to quickly learn how to manipulate these 
variables to successfully perform actions with a robot in the 
environment. 

III. PRELIMINARY RESULTS 

Our preliminary results focus on validating the underlying 
intuition behind our approach in the context of wheelchair 
mounted robotic arms [3]. First, we focused on the feasibility 
of introducing bottleneck layers to neural networks for robot 
control. In simulation (see center of Fig. 2), we manually 
generated 100 trajectories of a UR5 robotic arm performing 
three separate motion primitives: reach, grasp, and lift (300 
total trajectories). With this data, we used supervised learning 
to learn a policy for mapping an 18D state space to a 7D 
action space for each primitive. We repeated this process and 
varied the number of latent variables in the bottleneck layer 
of the neural network. This allowed us to analyze how the 
number of latent variables affected our performance (see 
right side of Fig. 2). Performance was measured by the mean 
squared error (MSE) of the validation data (10% of the total 
dataset). Our results reveal two interesting findings: 1) we 
were able to bottleneck all three networks down to four latent 
variables without sacrificing performance, and 2) with less 
than four latent variables, performance degraded at different 
rates for each of the primitives. 

Additionally, our internal engineering tests confirmed our 
intuition that amplified control is a plausible solution for high 
DOF control with a lower DOF of inputs. In these tests, we  

constructed a simple 5DOF robotic arm in simulation. We 
used deep reinforcement learning to learn a control policy 
using a network architecture that contained a bottleneck layer 
with 3 latent variables. Then we chopped the network in half, 
exposing the 3 latent variables as 3 inputs to the human 
operator. The inputs were uninterpretable. Nevertheless, we 
mapped those inputs to 3 inputs on a standard gaming 
joystick to see if we could successfully control the 5 DOF 
arm.  

Our anecdotal engineering tests generated a few 
observations: 1) we successfully used amplified control to 
complete simple tasks, and 2) we noticed a degree of 
familiarity; the longer we operated the system, the more 
comfortable it was to use it. These were by no means 
rigorous experiments or analyses. However, it did provide 
proof-of-concept evidence to further pursue this research. 

IV. CONCLUSION AND FUTURE WORK 

Amplified control presents new opportunities for direct, 
physical human-robot interactions for assistive applications. 
Our near-term future work has two foci. First is 
understanding the best way to design amplified control 
algorithms. Our preliminary results have inspired a number 
of design-based questions: What is the relationship between 
the action space and the number of required latent variables? 
How generalizable are the learned networks? Can we 
combine latent variables (or subsets of latent variables) to 
create networks capable of performing more complex and 
novel tasks? Can we increase the interpretability, 
transparency, and semantic applicability of latent variables? 
If so, what is the effect on performance? The second focus of 
our near-term future work is to conduct a human-robot 
interaction study to investigate how the task performance and 
user experience of amplified control compares to traditional 
and state-of-the-art robotic control paradigms. 
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Fig. 2. JACO robotic arm mounted on a power wheelchair [3] (left), our 
simulation environment (center), and preliminary results (right)  
   


