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Abstract— A critical capability required for the wide adop-
tion of mobile robots into society is the ability to navigate safely
around pedestrians. One important component to enable safe
navigation is to accurately predict the motion of pedestrians
in the scene. The main objective of this research is to develop
novel techniques that accurately predict human motion by using
past motion and intent as a prior for making the prediction.
In this study, we develop neural network architectures that
are capable of learning environment-agnostic embeddings that
serve as a prior for prediction. We combine these embeddings
with contextual information including desired velocity and a
probability distribution describing the intent to make predic-
tions. We compare the average displacement error and final
displacement error with state-of-the-art published results and
show evidence that combining contextual information results in
more accurate prediction of future motion.

I. INTRODUCTION

For decades, we have envisioned a world where humans
and robots interact seamlessly in society. An important
component of this interaction is to allow the robot to navigate
safely around pedestrians. Humans are extremely capable of
exhibiting this skill and seamlessly navigate around other
humans or groups of humans. We postulate that predicting
future trajectories of surrounding pedestrians is an important
characteristic that enables this seamless navigation skill.
In this paper, we present an algorithm that enables the
prediction of human trajectories in space.

Specifically, our main contribution is a framework that
combines learning a latent representation using deep neural
networks with contextual information. We have demonstrated
that our approach, when combined with contextual infor-
mation such as desired velocity and target goals can lead
to better long term prediction accuracy. We compare our
approach to algorithms that only learn a latent representation
from a neural network without using explicit contextual
information.

II. RELATED WORK

The study of human motion prediction has been researched
significantly in the past. In a work by Karasev et al., the
authors describe an approach to long term motion prediction
by modeling the pedestrian behavior using jump-Markovian
processes where the intent of the pedestrian is modeled as a
latent variable [1]. Another recently published work by Gupta
et al. describe an approach that combines a generative adver-
sarial network, a recurrent neural network and novel pooling
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mechanism to aggregate information across individuals or
pedestrians [2]. A more comprehensive survey on existing
taxonomies, approaches, prior art and future work has been
studied by Rudenko et al. [3]. Our approach differs from
other approaches by leveraging contextual information in
addition to embeddings learned by the deep neural network.

III. PROBLEM DEFINITION

In this section, we formally define the problem of pedes-
trian motion prediction. Similar to [2], we model the state
of pedestrian i as X; = (zf,y!), where t = 1,...,tops
and predict future trajectories as Y; = (xf,y?) where t =
tobs + 1,...,tpreq. In our experiments, we used values of
tobs = 8 and tp..q = 8 and 12 corresponding to a prediction

of 3.2 and 4.8 seconds, respectively.

IV. EXPERIMENT DETAILS
A. Architecture

Our architecture for prediction consists of an autoencoder
based neural network that consists of encoder, decoder and
hidden layers. Our encoder function uses a combination of
linear fully connected layers and an LSTM layer to capture
time series data. Our hidden layer includes the bottleneck of
the autoencoder along with combined data that explicitely
captures contextual information described below. The de-
coder network also consists of an LSTM decoding layer and
fully connected layer. The activation functions for all layers
include a Rectified Linear Unit. The input of our network
is t,ps X batch_size x state_size, where the state_size = 2
representing the (!, y!) coordinates. The output of the neural
network is ¢,..q x batch_size x state_size. The network
is trained using mean squared error between the predicted
trajectories and the ground truth as the loss function.

B. Contextual Information

In this preliminary study, we investigate two sources of
contextual information that can be considered as a prior for
prediction. The first is the average velocity of the pedestrian.
It seems straightforward that the average velocity of the
pedestrian will serve as a strong prior for predicting future
motion and it is not obvious that the LSTM network of
the neural network will capture this. The second contextual
information that we considered is the intended target or
goal of the pedestrian. In this work, we cluster the final
positions of the pedestrian using a small portion of the
dataset to find discrete goals. During training and testing,
we estimate a probability distribution of the goals using a
Gibbs distribution.



3 zaral

3 zaral

3 zaral

9,

)
LI 5

(a) Start of the Trajectory

Fig. 1.

(b) Middle of the Trajectory

(c) End of the Trajectory

This figure demonstrates our ability to estimate the long term goal of the human pedestrian. The red circles represent the observed positions of

the pedestrian. The green circles represent the idealized trajectories to each of the target positions. The opacity of the green colored circles represents the
probability of the observed trajectory mapping to goal trajectory. The darker circles represent a higher probability. (Best viewed in color)

C. Datasets and Metrics

Our experiments use two highly cited publicly available
datasets for training and evaluation purposes : ETH [4] and
UCY [5]. These two datasets consist of 5 datasets represent-
ing 4 scenes in crowded, outdoor environments. The metrics
used for evaluation are consistent with other research in this
space [1], [2] and include the average displacement error
(ADE) and the final displacement error (FDE). The ADE
is the average mean squared error between the predicted
positions and the ground truth over the entire predicted
trajectory. The FDE is the mean squared error between the
final position of the predicted trajectory and the ground truth.

V. PRELIMINARY RESULTS

In Fig. [ we show a few examples of our ability to
estimate the probability of the desired goal using a Gibbs
distribution. The red circles represent the observed positions
of the pedestrian during the observation period. The green
circles represent the idealized trajectories from the start of
the observed trajectory to each of the target positions. The
opacity of the green colored circles represents the probability
of the observed trajectory mapping to goal trajectory.

Tables [I| and [[I] compare the ADE and FDE in meters
between our approach using only the velocity information
and Social GAN [2]. The values in the table represent the
results using tpreq = (8 / 12). In most cases, we are able to
observe an increased accuracy when adding the contextual
information.

TABLE I
AVERAGE DISPLACEMENT ERROR

TABLE 11
FINAL DISPLACEMENT ERROR

Dataset | SGAN[2] | Ours |
ETH 1.13/1.29 | 1.15/1.33
HOTEL 0.71/1.02 | 0.56 /0.75
UNIV 0.70 / 1.18 | 0.69 / 1.10
ZARA1 0.42/0.69 | 0.41/ 0.60
ZARA2 0.42/0.64 | 0.39/0.56
Average | 0.68/0.96 | 0.64 / 0.87

navigate safely around humans. In this paper, we explore how
deep generative neural networks can be used for effective
human motion prediction. We present preliminary results de-
scribing the benefits to combine contextual information with
latent representations learned from a deep neural network
for motion prediction. There are many directions we plan to
take this research. We plan to extend our ability to understand
contextual information by including semantic information in
the scene. In addition, we plan to predict target goals and
destinations as well as learn patterns of life where a sequence
of targets can be learned. We also plan to integrate these
algorithms into a robot planning framework and assess the
robot’s ability to navigate efficiently to the desired goal while
avoiding obstacles. Finally, we plan to assess the human’s
reaction to the robot’s navigation in daily environments.
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